Part No. Z1-002-730, IB00393D Jun. 2009

## 取扱説明書

交流電源 PCR-LAシリーズ

# PCR 500LA PCR1000LA PCR2000LA PCR4000LA PCR6000LA







#### -保証-

この製品は、菊水電子工業株式会社の厳密な試験・検査を経て、その性能は規格を満足していることが確認され、お届けされております。

弊社製品は、お買い上げ日より1年間に発生した故障については、無償で修理いたします。 但し、次の場合には有償で修理させていただきます。

1. 取扱説明書に対して誤ったご使用およびご使用上の不注意による故障、損傷。

2. 不適当な改造・調整・修理による故障および損傷。

3. 天災・火災・その他外部要因による故障および損傷。

なお、この保証は日本国内に限り有効です。

This warranty is valid only in Japan.

#### 取扱説明書について

ご使用の前に本書をよくお読みの上、正しくお使いください。お読みになったあとは、いつでも見られる ように必ず保管してください。また製品を移動する際は、必ず本書を添付してください。

本書に乱丁、落丁などの不備がありましたら、お取り替えいたします。また、本書を紛失または汚損した 場合は、新しい取扱説明書を有償でご提供いたします。どちらの場合もお買い上げ元または当社営業所に ご依頼ください。その際は、表紙に記載されている「Part No.」をお知らせください。

本書の内容に関しては万全を期して作成いたしましたが、万一不審な点や誤り、記載漏れなどありました ら、当社営業所にご連絡ください。

#### 輸出について

特定の役務または貨物の輸出は、外国為替法および外国貿易管理法の政令/省令で規制されており、当社 製品もこの規制が適用されます。

政令に非該当の場合でもその旨の書類を税関に提出する必要があり、該当の場合は経済産業省で輸出許可 を取得し、その許可書を税関に提出する必要があります。

当社製品を輸出する場合は、事前にお買い上げ元または当社営業所にご確認ください。

Microsoft Visual Basic<sup>®</sup>、Microsoft Visual C++<sup>®</sup> は米国 Microsoft Corporation の米国およびその他 の国における登録商標です。

National Instruments NI-488.2M® は National Instruments Corporation, USA の登録商標です。 Borland® は Borland Software Corporation, USA の登録商標です。

Bonand® は Bonand Sonware Corporation, OSA 9 豆球间保 ( )

Delphi<sup>™</sup> は Borland Software Corporation,USA の商標です。

取扱説明書の一部または全部の転載、複写は著作権者の許諾が必要です。 製品の仕様ならびに取扱説明書の内容は予告なく変更することがあります。

Copyright© 2003-2009 菊水電子工業株式会社

## ⚠ 安全記号について

製品を安全にご使用いただくため、また安全な状態に保つために取扱説明書および製品本体に は、次の記号を表示しています。記号の意味をご理解いただき、各項目をお守りください。 (製品によっては使用されていない記号もあります。)

| ₹<br>the state of the state of t | 1 000 V 以上の高電圧を取り扱う箇所を示します。<br>不用意に触れると、感電し死亡または重傷を負う恐れがあります。触れる必<br>要がある場合は、安全を確保してから作業してください。 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 危険<br>DANGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | この表示を無視して、誤った取り扱いをすると、人が死亡または重傷を負う<br>危険が切迫して生じることが想定される内容を示します。                                |
| ▲警告<br>WARNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | この表示を無視して、誤った取り扱いをすると、人が死亡または傷害を負う<br>可能性が想定される内容を示します。                                         |
| <u>∧</u> 注意<br>CAUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | この表示を無視して、誤った取り扱いをすると、物的損害のみの発生が想定<br>される内容を示します。                                               |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 禁止する行為を示します。                                                                                    |
| Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 危険・警告・注意個所または内容を知らせるための記号です。<br>本製品上にこのマークが表示されている場合は、本取扱説明書の該当箇所を<br>参照してください。                 |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 保護導体端子を示します。                                                                                    |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | シャシ(フレーム)端子を示します。                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | オン(電源)を示します。                                                                                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | オフ(電源)を示します。                                                                                    |
| Д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ラッチ付き押しボタンスイッチの押されている状態を示します。                                                                   |
| Д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ラッチ付き押しボタンスイッチの出ている状態を示します。                                                                     |

## ▲ご使用上の注意

火災・感電・その他の事故・故障を防止するための注意事項です。潜在的なあらゆる危険を 予測することは困難ですが、本書には知り得る限りの危険を記載してあります。内容をご理 解いただき、必ずお守りください。



#### 使用者

用 途

- ・本製品は、電気的知識(工業高校の電気系の学科卒業程度)を有する方が取扱説 明書の内容を理解し、安全を確認した上でご使用ください。
- ・ 電気的知識の無い方が使用される場合は、人身事故につながる可能性がありますので、必ず電気的知識を有する方の監督のもとでご使用ください。

- ・ 製品本来の用途以外にご使用にならないでください。
- ・ 本機は交流安定化電源装置です。商用電源とは異なります。
- ・ 商用電源で用いる電気器具を本機の負荷として接続しないでください。
- ・ 本製品は、一般家庭・消費者向けに設計、製造された製品ではありません。



#### <u>入力電源</u>

- ・ 必ず定格の入力電源電圧範囲内でご使用ください。
- 入力電源の供給には、付属の電源ケーブルをご使用ください。ただし、入力電源 電圧を切り替え可能な製品、および 100 V 系 /200 V 系を切り替えなしで使用可 能な製品は、入力電源電圧によって付属の電源ケーブルを使用できない場合があ ります。その場合は適切な電源ケーブルを使用してください。詳しくは、取扱説 明書の該当ページを参照してください。



ヒューズ
 外面にヒューズホルダが配置されている製品は、ヒューズを交換することができます。ヒューズを交換する場合は、本製品に適合した形状、定格、特性のヒューズをご使用ください。詳しくは、取扱説明書の該当ページを参照してください。



カバー

機器内部には、身体に危険を及ぼす箇所があります。外面カバーは、取り外さな いでください。



#### <u>設 置</u>

- ・本製品を設置する際は、本取扱説明書の「2.2 設置場所の注意」をお守りください。
- ・ 感電防止のため保護導体端子は、必ず電気設備基準 D 種以上の接地工事が施さ れている大地アースへ接続してください。
- ・電源ケーブルを配電盤へ接続するときは、電気工事有資格者が工事を行うか、その方の監督のもとで作業してください。
- ・ キャスタ付き製品を設置する場合は、キャスタ止めをしてください。



#### 移動

- ・ POWER スイッチをオフにし、配線ケーブル類を外してから移動してください。
- ・ 質量が 20kg を越える製品は、二人以上で作業してください。製品の質量は、製品の後面または取扱説明書の仕様欄に記載されています。
- ・傾斜や段差のある場所は、人数を増やすなど安全な方法で移動してください。また、背の高い製品は、転倒しやすいので力を加える場所に注意して移動してください。
- ・ 製品を移動する際には、必ず取扱説明書も添付してください。



#### 操作

- ご使用の前には、必ず入力電源電圧やヒューズの定格および電源ケーブルの外観 などに異常がないかご確認ください。確認の際は、必ず電源プラグをコンセント から抜くか、配電盤のスイッチをオフにしてください。
- 本製品の故障または異常を確認したら、ただちに使用を中止し、電源プラグをコンセントから抜くか、電源ケーブルを配電盤から外してください。また、修理が終わるまで誤って使用されることがないようにしてください。
- ・ 出力配線または負荷用電線などの電流を流す接続線は、電流容量に余裕のあるものをお選びください。
- ・本製品を分解・改造しないでください。改造の必要がある場合は、購入元または 当社営業所へご相談ください。



#### 保守・点検

- ・感電事故を防止するため保守・点検を行う前に、必ず電源プラグをコンセントから抜くか、配電盤のスイッチをオフにしてください。
- ・ 保守・点検の際、外面カバーは取り外さないでください。
- 製品の性能、安全性を維持するため定期的な保守、点検、クリーニング、校正を お勧めします。



#### 調整・修理

・本製品の内部調整や修理は、当社のサービス技術者が行います。調整や修理が必要な場合は、購入元または当社営業所へご依頼ください。

## 目 次

| ご使用上の注意  |                                                                   |      |
|----------|-------------------------------------------------------------------|------|
| 第1章      | 概説                                                                | 1-1  |
| 1.1      | 製品の概要                                                             | 1-2  |
| 1.2      | <b>PCR-LA</b> シリーズの全容                                             | 1-2  |
| 1.3      | 特徴                                                                | 1-3  |
| 1.4      | 操作部分の概要                                                           | 1-4  |
| 1.5      | 取扱説明書と ROM バージョンについて                                              | 1-6  |
| 第2章      | 設置と使用準備                                                           | 2-1  |
| 2.1      | 開梱時の点検                                                            | 2-2  |
| 2.2      | 設置場所の注意                                                           | 2-4  |
| 2.3      | 移動時の注意                                                            | 2-6  |
| 2.4      | 接地 (アース)                                                          | 2-7  |
| 2.5      | 入力電源の接続                                                           | 2-8  |
| 2.6      | 電源投入                                                              | 2-14 |
| 2.7      | 動作確認                                                              | 2-16 |
| 2.8      | 負荷の接続                                                             | 2-21 |
| 第3章      | 基本操作                                                              | 3-1  |
| 3.1      | パネル操作の基本                                                          | 3-2  |
|          | 3.1.1 ジョグシャトルの使用方法                                                | 3-3  |
|          | 3.1.2 デジット機能の使用方法                                                 | 3-4  |
|          | 3.1.3 キーロック機能                                                     | 3-5  |
|          | 3.1.4 POWER スイッチを オフ にする直前の内容を記憶します                               | 3-6  |
| 3.2      | 出力のオン、オフ                                                          | 3-7  |
| 3.3      | 出力電圧を設定する                                                         | 3-8  |
|          | 3.3.1 山刀电圧モート (AC/AC-S/DC) の設定<br>3.3.2 出力電圧レンジ (100 V/200 V) の設定 | 3-8  |
|          | 3.3.3 出力電圧の設定                                                     | 3-14 |
| 3.4      | 周波数の設定                                                            | 3-19 |
| 第4章      | 応用操作                                                              | 4-1  |
| <u> </u> | 出力表示の切り秩う                                                         | 4.0  |
| 4.1      | 4.1.1 電圧表示モードの切り替え                                                | 4-2  |
|          | 4.1.2 電流・電力表示モードの切り替え                                             | 4-3  |
| 4.2      | リミット値の設定                                                          | 4-5  |
|          | 4.2.1 電圧リミット値                                                     | 4-6  |
|          | 4.2.2 周波数リミット値                                                    | 4-8  |
|          |                                                                   |      |

|     | 4.2.3 電流リミット値                      | 4-10 |
|-----|------------------------------------|------|
| 4.3 | メモリ機能                              | 4-13 |
| 4.4 | シンクロ機能                             | 4-15 |
| 4.5 | センシング機能                            | 4-16 |
| 4.6 | 保護機能                               | 4-18 |
|     | 4.6.1 アラーム発生時の操作                   | 4-19 |
|     | 4.6.2 オーバーロードをともなう ALARM 点灯        | 4-22 |
|     | 4.6.3 CIRCUIT BREAKER が作動した場合の対処方法 | 4-23 |
|     |                                    |      |

### 第5章 各部の名称と機能

| 5.1 | 前面    |              | -5-2 |
|-----|-------|--------------|------|
|     | 5.1.1 | コントロールパネル操作部 | -5-2 |
|     | 5.1.2 | コントロールパネル表示部 | -5-6 |
|     | 5.1.3 | 前面上部         | -5-9 |
|     | 5.1.4 | 前面下部         | 5-10 |
|     | 5.1.1 | 吸気口、キャスタ、その他 | 5-12 |
| 5.2 | 後面    |              | 5-14 |
|     | 5.2.1 | 後面上部         | 5-14 |
|     | 5.2.2 | 後面下部         | 5-14 |
|     | 5.2.3 | 排気口          | 5-17 |

#### 第6章 RS-232CとGPIB

| 6.1 | 機能説明                    | 6-2  |
|-----|-------------------------|------|
| 6.2 | 他のオプションとの組み合わせ          | 6-3  |
| 6.3 | RS-232C コントロールの準備       | 6-3  |
|     | 6.3.1 必要なハードウェア         | 6-3  |
|     | 6.3.2 RS-232C ケーブルの接続   | 6-4  |
|     | 6.3.3 RS-232C 設定        | 6-4  |
|     | 6.3.4 RS-232C フロー制御     | 6-5  |
| 6.4 | GPIB コントロール (オプション) の準備 | 6-6  |
|     | 6.4.1 必要なハードウェア         | 6-6  |
|     | 6.4.2 GPIB ケーブルの接続      | 6-7  |
|     | 6.4.3 GPIB 設定           | 6-7  |
| 6.5 | PCR-Lコマンド互換性の設定         | 6-8  |
| 6.6 | メッセージとターミネータ            | 6-10 |
|     | 6.6.1 メッセージ             | 6-10 |
|     | 6.6.2 ターミネーターーーーー       | 6-12 |
| 6.7 | メッセージとレジスタ              | 6-13 |
|     |                         |      |
| 第7章 | 保守                      | 7-1  |
| 7 1 | <b>枳</b> 孛              | 7 0  |
| /.1 | 小 /〕                    | /-2  |

第 3 章

5-1

6-1

付 録

#### 第8章 参照・解説

| 8.1  | 従来製品 PCR-L シリーズとの関係 | 8-2    |
|------|---------------------|--------|
| 8.2  | 入力電源ケーブルの要件         | 8-2    |
| 8.3  | 出力オフ状態のインピーダンス      | 8-3    |
| 8.4  | 出力と負荷について           | 8-4    |
| 8.5  | 過負荷保護機能             | 8-9    |
| 8.6  | AC モードと AC-S モードの違い | - 8-12 |
| 8.7  | 電圧表示モードと測定方式        | - 8-12 |
| 8.8  | 電流・電力表示モードと測定方式     | - 8-14 |
| 8.9  | 力率、VA、ピークホールド電流測定   | - 8-14 |
| 8.10 | LOAD レベルメータ動作例      | - 8-15 |
| 8.11 | センシング機能の方式          | - 8-16 |
| 8.12 | メモリ機能の応用            | - 8-17 |
| 8.13 | メモリ機能の拡張            | - 8-17 |
| 8.14 | 電源ライン異常シミュレーション     | - 8-18 |
| 8.15 | シーケンス動作             | - 8-18 |
| 8.16 | ステータス信号とトリガ信号       | - 8-19 |
| 8.17 | 高調波電流解析機能           | - 8-20 |
| 8.18 | 特殊波形出力              | - 8-20 |
| 8.19 | 出力インピーダンス設定         | - 8-20 |
| 8.20 | 出力オン、オフの位相設定        | - 8-21 |
| 8.21 | AC+DC モード           | - 8-21 |
| 8.22 | コントロールパネル、キー操作の階層   | - 8-21 |
|      |                     |        |

#### 第9章 RS-232CとGPIBメッセージ解説

| <b>^</b> |  |
|----------|--|
| u_1      |  |
| J-1      |  |

| 9.1 | レジスタ関連と汎用デバイスメッセージ  | 9-2  |
|-----|---------------------|------|
| 9.2 | 動作状態メッセージ           | 9-14 |
| 9.3 | 出力電圧・周波数設定メッセージ     | 9-22 |
| 9.4 | 出力測定メッセージ           | 9-25 |
|     | 9.4.1 出力電圧の測定       | 9-25 |
|     | 9.4.2 出力電流の測定       | 9-27 |
|     | 9.4.3 電力・皮相電力・力率の測定 | 9-29 |
|     | 9.4.4 高調波解析         | 9-30 |
| 9.5 | リミット値設定メッセージ        | 9-34 |
|     | 9.5.1 電圧リミット値       | 9-34 |
|     | 9.5.2 周波数リミット値      | 9-37 |

|      | 9.5.3 電流リミット値                   | 9-39 |
|------|---------------------------------|------|
| 9.6  | メモリ設定メッセージ                      | 9-41 |
| 9.7  | 電源ライン異常シミュレーションメッセージ            | 9-44 |
|      | 9.7.1 各パラメータメッセージ               | 9-45 |
|      | 9.7.2 電源ライン異常シミュレーション・スタート/ストップ | 9-53 |
| 9.8  | シーケンス動作メッセージ                    | 9-54 |
| 9.9  | 特殊波形メッセージ                       | 9-61 |
| 9.10 | 電流計測値のゼロ校正機能メッセージ(並列運転時)        | 9-65 |
| 9.11 | レジスタについて                        | 9-65 |
| 9.12 | メッセージー覧表                        | 9-70 |

### 第10章 オプション

|   | 10.1    | オプションの種類と組み合わせ            | 10-2  |
|---|---------|---------------------------|-------|
|   | 10.2    | 電源ライン異常シミュレーション           | 10-4  |
|   | 10.3    | シーケンス動作                   | 10-4  |
|   | 10.4    | 高調波電流解析機能                 | 10-5  |
|   | 10.5    | 特殊波形出力                    | 10-5  |
|   | 10.6    | 出力インピーダンス設定               | 10-6  |
|   | 10.7    | 力率、VA、ピークホールド電流計測         | 10-6  |
|   | 10.8    | 出力オン、オフの位相設定              | 10-7  |
|   | 10.9    | AC+DC モード                 | 10-7  |
|   | 10.10   | メモリ機能の拡張                  | 10-8  |
|   | 10.11   | レギュレーションアジャスト             | 10-8  |
|   | 10.12   | 単相3線出力                    | 10-8  |
|   | 10.13   | 三相出力                      | 10-9  |
|   | 10.14   | 並列運転(出力容量拡大)              | 10-9  |
|   | 10.15   | 出力拡張キット                   | 10-10 |
|   | 10.16   | 出力インピーダンスを商用電源に近似させる機能    | 10-10 |
|   | 10.17   | ハーモニクスアナライザ               | 10-11 |
|   | 10.18   | イミュニティテスタ                 | 10-11 |
|   | 10.19   | ラックマウント                   | 10-12 |
| 쏰 | · 1 1 겯 |                           | 44 4  |
| 矛 |         | 릐 │⊥1泳                    | 11-1  |
|   | 11.1    | 本体部仕様                     | 11-2  |
|   | 11.2    | RS-232C および GPIB における動作仕様 | 11-7  |
|   | 11.3    | 動作特性                      | 11-9  |

11.4 外形寸法図 ------ 11-10

A-1

第 1 章

第 2 章

第 3 章

第 4 章

第 5 章

第 6 章

第 7 章

第 8 章

第 9 章

第 10

章

第 11 章

付 録

10-1

| 索引  |                      | I-1 |
|-----|----------------------|-----|
| A.4 | サンプルプログラム            | A-8 |
| A.3 | シーケンス動作設定表           | A-7 |
| A.2 | 電源ライン異常シミュレーション動作設定表 | A-6 |
| A.1 | 用語の解説                | A-2 |



本機の概要および特徴を紹介します。

### 1.1 製品の概要

PCR-LAシリーズは永年にわたり実績のある PCR-Lシリーズ交流電源をさらに進化 させたものです。高速リニアアンプと任意波形シンセサイザの組み合せにより、純 度の高い交流電源を実現します。電源環境シミュレーション機能や、計測機能を装 備していますので、電源環境試験に使用できます。入力電源は高力率コンバータの 採用で高調波電流の抑制対策を行っています。

### **1.2 PCR-LA**シリーズの全容

#### PCR-LA シリーズは単相出力で、次のような機種があります。

| 形名        | 定格出力容量(最大出力電流)                        |
|-----------|---------------------------------------|
| PCR500LA  | 500 VA(100 V 出力時 5 A、200 V 出力時 2.5 A) |
| PCR1000LA | 1 kVA(100 V 出力時 10 A、200 V 出力時 5 A)   |
| PCR2000LA | 2 kVA(100 V 出力時 20 A、200 V 出力時 10 A)  |
| PCR4000LA | 4 kVA(100 V 出力時 40 A、200 V 出力時 20 A)  |
| PCR6000LA | 6 kVA (100 V 出力時 60 A、200 V 出力時 30 A) |



#### 従来製品 PCR-L シリーズとの関係

PCR-LA シリーズと従来製品 PCR-L シリーズとの組み合わせは、オプションを含め て原則としてできません。

オプションの詳細は「第10章オプション」を参照してください。

概説

### 1.3 特徴

PCR-LA シリーズは、高性能の CV・CF(定電圧・定周波数)機能に加えて、次のような各種機能を装備しています。

#### ■ 各種電源シミュレーション\*

停電や瞬低などの電源ライン異常シミュレーションが可能です。正弦波以外の波形 出力ではピーククリップや高調波重畳が代表的なものです。電源環境試験を行うた めの基本的な機能です。

#### ■ 各種計測

出力の実効値電圧・電流,ピーク電圧・電流,電力,力率\*を測定することができ ます。出力電流の高調波解析(39次まで)\*が可能です。

#### ■ シーケンス\*

出力電圧・周波数・波形などを時間の経過とともに変化させることができます。電 源環境試験を自動化することができます。

#### ■ DC 出力

DC 出力および AC + DC 出力 \* が可能です。化学や物理などの幅広い分野で使用 することができます。

#### ■出力インピーダンス可変\*

出力インピーダンスを変化させることができます。実際の電源ラインを模擬するこ とができます。

#### ■ センシング, レギュレーションアジャスト\*

負荷機器が離れた場所に設置されている場合でも、電圧降下を補正して負荷端での 電圧(実効値)を安定化することができます。

#### ■ トランス負荷対応

出力の直流オフセット電圧を小さくしています。トランスやスライドトランスの偏 磁現象を抑えることができます(AC-S モード)。

#### ■ 大容量の出力相数切り替えシステム\*

単相 / 単相 3 線切り替え、および単相 / 三相切り替えシステムがあります。単相出 力機をベースにシステム構成可能です。

\* 印の機能を使用するためには、標準装備の RS-232C コントロールまたは別途オプ ションが必要です。オプションについては「第 10 章オプション」を参照してくだ さい。

#### 1.4 操作部分の概要

本機の単体および組み合わせシステムにおいて、操作する部分を示します。 \*印の機能を使用するためには、標準装備のRS-232C コントロールまたはオプショ ンが必要です。オプションについては「第10章オプション」を参照してください。

#### ■コントロールパネルによる操作

コントロールパネルのキーとジョグシャトルを使って各種設定を行います。誤って 設定値を変えてしまうことを防止するために、キーロック機能があります。コント ロールパネルは引き出して、角度をつけることができます。背の低い機種での操作 性を向上させています。





収納する場合

概

説

#### ■ リモートコントローラによる操作\*

リモートコントローラのキーとジョグシャトルを使って各種設定を行います。誤っ て設定値を変えてしまうことを防止するために、キーロック機能があります。本体 との接続は、専用ケーブルを使用します。



図 1-2 本体とリモートコントローラ接続図

■ 外部通信インターフェース\*

パソコンにより制御することができます。RS-232C コントロールは標準装備で、 GPIB インターフェースはオプションです。



図 1-3 本体とパソコン接続図

#### ■並列運転\*

本機の同一機種を並列接続します。最大5台まで可能です。本体操作はマスタ機で 各種設定を行います。リモートコントローラによる操作およびパソコンによるリ モートコントロールが可能です。



図 1-4 並列接続図

### 1.5 取扱説明書と ROM バージョンについて

この取扱説明書は

バージョン 3.4x

の ROM を搭載した製品に適用します。

製品についてのお問い合わせの際には、

・形名

・ROM のバージョン

・製造番号,レビジョン番号 (後面下部に表示されています。)

をお知らせください。

なお ROM バージョンの確認方法は、「2.6 電源投入」を参照してください。

## 第2章 設置と使用準備

この章では、製品の開梱から実際に製品を使用する前までを説明します。

### 2.1 開梱時の点検

製品がお手元に届きしだい、付属品が正しく添付されているか、輸送中に損傷を受けていないかをお確かめください。

万一、損傷または不備がございましたら、お買い上げ元または当社営業所にお問い 合わせください。

注記 · 梱包材は本製品を輸送する際に必要となりますので、保存しておかれることを お勧めします





PCR500LA専用入力電源ケーブル[85-10-0740]。他の機器には使用できません。



図 2-2 ケーブルクランパ

置

しと使

用

準

備





ケーブルクランパ PCR4000LA、PCR6000LA用 取扱説明書 [Z1-002-730] WEIGHTシール PCR500LA [A8-000-003] PCR1000LA[A8-000-008] PCR2000LA[A8-000-009] PCR4000LA[A8-000-010] PCR6000LA[A8-000-011]

図 2-3 ケーブルクランパ他

■ 付属品リスト

|               | PCR500LA                                                   | PCR1000LA                | PCR2000LA                | PCR4000LA         | PCR6000LA       |
|---------------|------------------------------------------------------------|--------------------------|--------------------------|-------------------|-----------------|
| 入力電源<br>ケーブル  | 3 芯キャブタイヤ<br>ケーブル<br>(3P プラグ /<br>インレット<br>ソケットタイプ)<br>1 本 | 3芯キャブタイヤ<br>ケーブル<br>1本   |                          | 単芯ケーブル<br>3 本     |                 |
| 電線径           | $2 \text{ mm}^2$                                           | $5.5 \mathrm{mm}^2$      | 8 mm <sup>2</sup>        | $22 \text{ mm}^2$ |                 |
| 長さ            |                                                            | 3 m                      |                          |                   |                 |
| ケーブル<br>クランパ  | なし                                                         | 1組                       |                          |                   |                 |
|               |                                                            | 固定用ねじ<br>M3:1本<br>M4:2本) | 固定用ねじ M3:<br>2本<br>M4:2本 | 固定戶<br>M3:<br>M4: | 月ねじ<br>4本<br>2本 |
| 取扱説明書         | 1冊                                                         |                          |                          |                   |                 |
| WEIGHT<br>シール | 1枚                                                         |                          |                          |                   |                 |

注記 · PCR2000LA、PCR4000LA、PCR6000LAでは、本体後面下部のコネクタ J4 に専 用コネクタ(特定端子間を短絡するもの)が挿入されていることを確認してく ださい。コネクタが挿入されていないと、電源が投入できません。



本体後面下部のコネクタJ1~J4は、オプションのOT01-PCR-LA/2,/3出力拡張
 キットで使用します。

### 2.2 設置場所の注意

本機を設置する際の注意事項です。必ず守ってください。

#### ■可燃性雰囲気内で使用しないでください。

爆発や火災を引き起こす恐れがありますので、アルコールやシンナーなどの可燃物 の近く、およびその雰囲気内では使用しないでください。

#### ■高温になる場所、直射日光の当たる場所を避けてください。

発熱・暖房器具の近く、および温度が急に変化する場所に置かないでください。 使用温度範囲:0℃~ 50℃

保存温度範囲:-10 ℃~60 ℃

#### ■ 湿度の高い場所を避けてください。

湯沸かし器、加湿器、水道の近くなど湿度の高い場所には置かないでください。

使用湿度範囲:20%~80%RH(結露なきこと)

保存湿度範囲:90%RH以下(結露なきこと)

使用湿度範囲内でも結露する場合があります。その場合には、完全に乾くまで本機 を使用しないでください。

#### ■ 腐食性雰囲気内に置かないでください。

腐食性雰囲気内や硫酸ミストの多い環境に設置しないでください。本機内部の導体 腐食やコネクタの接触不良などを引き起こし、誤動作や故障の原因になり、火災に つながることがあります。

ただし、改造により対応可能な場合もありますので、上記のような環境での使用を 希望される場合は、当社営業所にご相談ください。

#### ■ほこりや塵の多い場所に置かないでください。

ほこりや塵の付着により感電や火災につながることがあります。

#### ■風通しの悪い場所で使用しないでください。

本機は強制空冷です。後面以外の面の吸気口から空気を取り込み、後面へ排出しま す。熱がこもり火災の原因になりますので、吸気口および排気口をふさがないよう に周囲に充分な空間を確保してください。

吸気口および排気口と壁面(または障害物)との間は必ず 20 cm 以上あけてください。

排気口からは熱風(周囲温度より 30 ℃位高い)が出ます。熱に弱い物を置かない でください。

#### ■本機の上に物を乗せないでください。

特に重たい物を乗せると、故障の原因になります。

準備

■ 傾いた場所や振動がある場所に置かないでください。

落ちたり、倒れたりして破損やけがの原因になります。

■ 周囲に強力な磁界や電界がある場所や入力電源の波形ひずみやノ イズが多い場所で使用しないでください。

本機が誤作動する可能性があります。

■ 周囲に感度の高い測定器や受信機がある場所で使用しないでくだ さい。

本機から発生するノイズにより、機器が影響を受けることがあります。

#### 設置場所に固定する場合

本機の底面にはキャスタが付いていますので、少ない力でも移動することができま す。本機を使用中に誤って移動させてしまうことがないように、ストッパを使って 設置場所に固定してください。(PCR500LA には、ストッパおよびキャスタはあり ません。)

ストッパの使用方法

- <u>1.</u> ストッパは、上から見て、左(反時計方向)へ回すと上がり、右(時計方向) へ回すと下がります。
- <u>2.</u> 移動が完了したら本体が固定されるまで右へ回してください。
- <u>3.</u> キャスタをロックしてください。



PCR1000LA PCR2000LA



PCR6000LA

キャスタのロックレバーは 機種によって異なります。

図 2-4 キャスタのロック方法



図 2-5 ストッパの操作

### 2.3 移動時の注意

本機を設置場所まで移動する、または本機を輸送する際には、次の点に注意してく ださい。

#### ■ POWER スイッチをオフにしてください。

POWER スイッチをオンにしたまま移動すると、感電や破損の原因になります。

#### ■ 接続されているすべての配線を外してください。

ケーブル類を外さないで移動すると、断線や転倒によるけがの原因になります。

#### ■ストッパを上げてください。

ストッパを使って設置場所に固定してある場合、ストッパを上げてください。ストッパを上げないで移動すると、転倒によるけがの原因になります。 (PCR500LAには、ストッパおよびキャスタはありません。)

#### ■キャスタをフリーにしてください。

#### ■一人で移動しないでください。

移動作業は二人以上で行ってください。特に傾斜や段差のある場所では充分に注意 してください。

底面に手をかけてください。

事前に重量を確認してください。重量は本機の後面下部に表示されています。

フォークリフトを使用する場合には、必ず底面へフォークをかけ、安定性を十分確 認してからつり上げてください。

バンドなどを用いて、クレーンでつり上げる場合には、必ず底面へバンドをかけ、 安定性を十分確認してからつり上げてください。

本機を移動する際には、横に倒したり、天地を逆にしたりしないでください。

#### ■ハンドルを使って持ち上げないでください。

ハンドルはキャスタで本機を移動するときに手をかけるためのものです。本機の重 量を支えるだけの強度はありません。

本機を持ち上げるときは、前面パネルと後面パネルの下部を二人以上で持ってくだ さい。

用準備

### ハンドルの操作手順

- <u>1.</u> 2 つのロックスイッチを UNLOCK の方向に同時にスライドさせると、ハンド ルが移動可能な状態になります。
- カチッと音がするまで、ハンドルを手前いっぱいに引き出します。または押し込みます。



図 2-6 ハンドル操作

### 2.4 接地 (アース)

付属のケーブル(入力電源ケーブルとして付属)を使用して、本機の INPUT 端子 盤の GNDを専用の接地端子(アース)へ接続してください(図 2-7)。 PCR500LAはソケット付の入力ケーブルです。3Pプラグを確実に接続してください。

▲ 警告 · 接地を行わないと、感電の恐れがあります。死亡または傷害を追う可能性があります。必ず接地してください。

・ 接地は電気設備技術基準に基づく D 種接地工事が施されている部分へ行わなけ ればなりません。

▲ 注意 ・ 接地を行わないと、外来ノイズにより誤動作したり、本機から発生するノイズ が大きくなったりすることがあります。

### 2.5 入力電源の接続



#### ⚠ 警告

- PCR1000LA、PCR2000LA、PCR4000LA、PCR6000LAは永久設置型機器です。
  必ず配電盤へ接続してください。
  - ・ 感電の恐れがあります。死亡または傷害を負う可能性があります。
    入力電源ケーブルを接続するときは、感電を避けるため、接続の前に配電盤スイッチ(配電盤からの電源供給を遮断するスイッチ)を OFF にしてください。
  - ・ 配電盤への接続は電気工事有資格者が行ってください。
  - 本製品と配電盤スイッチとの距離が3m以下になるように配線してください。配 電盤スイッチとの距離を3m以下にすることによって、緊急時に配電盤スイッ チの操作が容易になります。
     配電盤スイッチとの距離が3m以上必要な場合は、本製品から3m以内に別の

11. 電磁スイッチとの距離が31m以上の安な場合は、本製品が531m以内に別の スイッチを設けて配線してください。スイッチは L と N を同時に遮断できる 2 極のものを使用してください。

#### 接続手順

- <u>1.</u> ターミナルボックスのカバーを外し、図 2-7 のように INPUT 端子盤に付属の 電源ケーブルを接続します。
- 2. 配電盤のスイッチをオフにします。
- 電源ケーブルを配電盤へ接続します。
  付属の入力電源ケーブルの配電盤側は、端末処理が施されていません。

端末処理においては、接続する配電盤の端子ねじに適合した圧着端子などを取り付け、確実に接続してください(図 2-7)。 作業は電気工事有資格者が行ってください。

- <u>4.</u> 入力電圧範囲に応じてINPUT VOLTAGE SELECTOR を選択します(図 2-10)。
  PCR6000LA には INPUT VOLTAGE SELECTOR は付いていないため、この手順は不要です。
- 5. 付属のケーブルクランパを取り付け、入力電源ケーブルを確実に固定します (図 2-11)。
   PCR500LA はソケット付の入力ケーブルです。
   ケーブルクランパは付属されません。
- <u>6.</u> 手順1で外したカバーを取り付けます。

#### INPUT 端子盤

下図に本体後面の INPUT 端子盤を示します (PCR1000LA、PCR2000LA、 PCR4000LA、PCR6000LA)。

PCR500LA はインレットソケットタイプです。



#### ■ 配電盤への接続

配電盤の極性(L, N, ④)が不明な場合には、必ず電気工事有資格者または電気主任技術者に確認を依頼してください。

設置場所などの都合により付属の入力電源ケーブルが使用できない場合には、電気 工事有資格者または電気主任技術者に相談し、内線規定に従ってケーブルの電線径 (導体公称断面積)を選択してください。詳細は「8.2入力電源ケーブルの要件」を 参照してください。



図 2-8 入力電源ケーブル(配電盤側)

▲ 注意 ・ 配電盤スイッチは必ず使用してください。配電盤に装備されていない場合は、新たに準備してください。

- ・ 端子のねじが確実に締められていないとケーブルがはずれたり、接続部が過熱したりして危険です。
- ・ ケーブルの圧着端子は必ず適合したものを使用してください。
- 入力電源ケーブルは OUTPUT 端子盤へは絶対に接続しないよう注意してくだ さい。故障の原因となります。

#### ■ PCR500LA 用電源ケーブル

PCR500LA 専用電源ケーブルは 3P プラグ付です。2P コンセントへの接続はできま せん。

置

ー と 使

用準備





PCR500LA専用入力電源ケーブル[85-10-0740]。他の機器には使用できません。 図 2-9 3P プラグ付電源ケーブル

- ▲ 注意 ・ 2P コンセントへの接続は、電流容量が不足したり、接地ができないので感電する恐れがあります。
  - ・ 付属される 3P プラグ付電源ケーブル (図 2-9)の定格電圧は AC125 V です。もし、本製品を 200 V 系の入力電源電圧で使用する場合は、入力電圧に適した電源ケーブルと交換してください。
  - ・ 適切な電源ケーブルは専門の技術者が選択してください。電源ケーブルの入手 が困難な場合は、お買い上げ元または当社営業所へご相談ください。

本製品に添付された電源ケーブルを他の機器の電源ケーブルに使用しないでくだ さい。

#### INPUT VOLTAGE SELECTOR

INPUT VOLTAGE SELECTOR はターミナルボックス内中央部にあります。 ロック式のトグルスイッチです。ノブを引き上げながら切り替えます。





⚠注意

・ 通電中は切り替えないでください。故障の原因になります。



図 2-11 ケーブルケーブルクランパ

設置と使用準備

#### ■ ケーブルクランパの取り付け手順

- <u>1.</u> 付属の M4 ねじを用いて、(A)を本体に取り付けます。
- 2. 付属の入力ケーブルを溝部へ乗せます。
- 3. 付属の M3 ねじを用いて、(B) と(C)を上から取り付けます。

| ⚠ 注意 | • | 入力電源ケーブルがケーブルクランパで本機にしっかりと固定されていない      |
|------|---|-----------------------------------------|
|      |   | と、何らかの原因で INPUT 端子盤に無理な力が加わったときに、端子盤を破損 |
|      |   | したり結線がはずれてショートしたりして、感電することがあります。        |
|      | • | 付属のケーブル以外のケーブルを使用する場合には、ケーブルクランパが適合     |
|      |   | しないことがあります。                             |

### 2.6 電源投入



注記・ PCR2000LA、PCR4000LA、PCR6000LA では、本体後面下部のコネクタ J4 に専用コネクタ(特定端子間を短絡するもの)が挿入されていることを確認してください。コネクタが挿入されていないと、電源が投入できません。



本体後面下部のコネクタ J1 ~ J4 は、オプションの OT01-PCR-LA/2、/3 出力拡張
 キットで使用します。

#### 電源投入手順

- <u>1.</u> 本機の POWER スイッチをオフにします。
- 2. 入力電源ケーブルが正しく接続されていることを確認します。
- <u>3.</u> 本機の OUTPUT 端子盤に出力ケーブルが接続されていないことを確認しま す。
- <u>4.</u> 本機の前面下部にある OUTPUT コンセントには、何も接続されていないこと を確認します。
- 5. 配電盤のスイッチを オン にします。PCR500LA は入力電源プラグをコンセン トに差し込みます。
   本機の前面下部にある LINE ランプが点灯します。
   PCR500LA には LINE ランプは付いていません。

ー と 使

用 準

備

以下の表示例についてはすべて PCR1000LA のものを示します。(機種により

8. 以上の手順において異常が発生しなければ、電源投入の動作確認を終了しま す。

コントロールパネルの表示が、以下のようになるかどうかを確認します。

LINE ランプが点灯しない場合には、本機の故障が考えられます。配電盤のス イッチを オフにして、お買い上げ元または当社営業所まで連絡してください。

この時、本機の周囲または内部で異常音、異臭、発火、発煙などが発生した場 合には、直ちに配電盤のスイッチを オフ にするか、入力電源プラグをコンセ

本機の POWER スイッチを オン にします。

「図 2-12:バージョン表示画面|

「図 2-13:ホームポジション」

ントから抜いてください。

多少表示が異なります。)

#### ■ バージョン表示動作

6.

7.

数秒間バージョンが表示されます。その間、SELF TEST が点滅します(本機 の内部チェックを実行しています)。

バージョンは電流表示エリアに V3. XX (XX は数字)と表示されます。周波 数表示エリアには、サブバージョンが表示されます。



図 2-12 バージョン表示画面

#### ■ ホームポジション動作

バージョン表示動作後、内部チェックにおいて異常がなければ、ホームポジ ションになります。ホームポジションについては「3.1 パネル操作の基本 | を 参照してください。

この時 ALARM が点灯したらアラームが発生したことを示しています。

ALARM 点灯および ErrX (X は数字)と表示された場合には、「4.6 保護機能| を参照してください。



図 2-13 ホームポジション

 注記・ POWER スイッチを オン にしたとき、一瞬コントロールパネルのすべての表示 が点灯します。数秒間経過してもこの状態(全点灯)が続く場合には、いった ん POWER スイッチを オフ にしてください。そして、5 秒以上経過した後 オン にしてください。

### 2.7 動作確認



#### 動作確認に必要な知識

■イニシャルセットアップ状態

本機の購入後はじめて電源投入した時の状態(工場出荷時の状態)を「イニシャル セットアップ状態」といいます。他の状態からイニシャルセットアップ状態にする には、次のリセット手順を実行します。イニシャルセットアップ状態のコントロー ルパネルの表示を下図に示します。



図 2-14 イニシャルセットアップ状態

主な設定のイニシャルセットアップ状態を以下に示します。

| 出力 OUTPUT  | OFF                        |  |
|------------|----------------------------|--|
| 出力電圧モード    | AC                         |  |
| 周波数        | 50.00 Hz                   |  |
| 出力電圧レンジ    | 100 V                      |  |
| 電圧設定       | 0.0 VRMs (実効値)             |  |
| 電圧表示モード    | 約 0 V <sub>RMS</sub> (実効値) |  |
| 電流・電力表示モード | 約0ARMS(実効値)                |  |

#### ■ リセットの実行

使用中に何らかの理由で、工場出荷時の状態に戻したい場合は、リセットを実行し てイニシャルセットアップ状態にすることができます。

#### 手順

- POWER スイッチをオンにして、ホームポジションにします。
  POWER スイッチをオンにした直後の状態を、「ホームポジション」といいます(OUTPUTのオン、オフ状態は問いません)。他の状態からホームポジションに戻すには、ESC キーを押します。
- <u>2.</u> RESET (SHIFT, 6) キーを押します。

コントロールパネルの RESET と ENT が点滅します。 本書では、SHIFT を伴なうキー操作を次のように表記します。 RESET (SHIFT, 6) = 「SHIFT キーを押して(押し続ける必要はない)、コント ロールパネルの SHIFT を点灯させた後、6を押すこと。」を表わします。



図 2-15 RESET と ENT が点滅

|    | <u>3.</u> | SHIFT キーを押した後に ENT キー (SHIFT,ENT) を押します。  |  |  |  |  |
|----|-----------|-------------------------------------------|--|--|--|--|
|    |           | リセット機能が作動して、イニシャルセットアップ状態になります。           |  |  |  |  |
|    |           |                                           |  |  |  |  |
| 注記 | •         | (SHIFT, ENT)は、特殊なキー操作です。リセットを実行するとイニシャルセッ |  |  |  |  |
|    |           | トアップ状態になるため、リセット操作に限っては不用意に操作できないよう       |  |  |  |  |
|    |           | に、ENT キー ではなく(SHIFT, ENT)キーとなっています。       |  |  |  |  |

#### 動作確認

#### ■ JOG で電圧を設定する(30 V: 電圧設定モード)

- 1. リセット手順を実行して、本機をイニシャルセットアップ状態にします。
- Vキーを押します。(電圧設定モード)
  電圧表示エリアの周りの枠と SET が点灯します。
- JOG を右に回して、電圧表示の値を 30.0 V に合わせます (ENT キー を押す 必要はありません)。

電圧が上がり過ぎた場合には、JOG を左に回すと電圧は下がります。



図 2-16 枠の動作、設定可能部分の表示

#### ■OUTPUT オン、オフを行う

<u>4.</u> ESC キー を押します。(電圧設定モードを終了)
 SET と枠が消灯し、RMS だけが点灯します。
 電圧表示の 30.0 V が ほぼ 0 V に変わります (OUTPUT が オフなので)。
 この状態では、出力電圧の実効値が表示されます。

- <u>5.</u> OUTPUT キーを1回押します。
  OUTPUT ONが表示され、電圧表示が29.7 V ~ 30.3 V になります。
  この時、本機のOUTPUT 端子盤には30 V が印加されています。
- <u>6.</u> OUTPUT キーを1回押します。OUTPUT OFFが表示され、電圧表示がほぼ0Vになります。
- 注記 ・ 電圧表示値に異常がある場合には、故障が考えられますので、お買い上げ元または当社営業所まで連絡してください。以降の手順でも、電圧値を確認する場合には、手順4と同じように操作してください。
  - 電圧レンジを切り替えて(100 V → 200 V) OUTPUT オン、オフ を行う
  - <u>7.</u> RANGE (SHIFT, 7) キーを押します。 ENT と RANGEの下の 200 V が点滅します。



図 2-17 電圧レンジ切り替え(100 V→200 V)

- ENT キーを押します。
  RANGE の下の 100 V が消えて 200 V が点灯します。
- OUTPUT キーを1回押します。
  OUTPUT ONが表示され、電圧表示が29.7 V ~ 30.3 V になります。
  この時、本機のOUTPUT 端子盤には30 V が印加されています。
- <u>10.</u> OUTPUT キーを1回押します。 OUTPUT OFFが表示され、電圧表示がほぼ0Vになります。
- キーで電圧を設定して、設定モードのまま OUTPUT オン、オフを 行う
- <u>11.</u> V キーを押します。(電圧設定モード)
- <u>12.</u> 0, ENT の順にキーを押します。 0 V に設定。
- <u>13.</u> OUTPUT キーを1回押します。 OUTPUT ONが表示され、電圧表示が0.0 V ~ 0.8 V になります。

設置と使

用 準

備

- <u>14.</u> OUTPUT キーを1回押します。 OUTPUT OFF が表示されます。
- ■電圧レンジを元に戻す(200 V → 100 V)。最後に OUTPUT オン、 オフを行う。
- <u>15.</u> ESC キー を押します。(電圧設定モードを終了) SET と枠が消灯します。
- <u>16.</u> RANGE (SHIFT, 7) キー を押します。 ENT と RANGE の下の 100 V が点滅します。



図 2-18 電圧レンジ切り替え(200 V→100 V)

- <u>17.</u> ENT キー を押します。 RANGE の下の 200 V が消えて 100 V が点灯します。
- <u>18.</u> OUTPUT キーを1回押します。 OUTPUT ON が表示され、電圧表示が0.0 V ~ 0.5 V になります。
- <u>19.</u> OUTPUT キーを1回押します。 OUTPUT OFF が表示されます。
- <u>20.</u> 動作確認終了。
用 準

備

## 2.8 負荷の接続

本機から取り出せる最大電流は機種毎に異なります。また本機の電圧モードや負荷 の種類・状態で異なります。負荷の容量に対して十分な出力電力容量を確保してく ださい。機種別の出力最大電流(ACモード)を下表に示します。詳細は「8.4 出力 と負荷について」を参照してください。

表 2-1 出力最大電流 AC モード(AC 実効値)

(出力電圧1V~100 V/2V~200 V、負荷力率0.8~1の場合)

| 出力電圧レンジ | PCR500LA | PCR1000LA | PCR2000LA | PCR4000LA | PCR6000LA |
|---------|----------|-----------|-----------|-----------|-----------|
| 100 V   | 5 A      | 10 A      | 20 A      | 40 A      | 60 A      |
| 200 V   | 2.5 A    | 5 A       | 10 A      | 20 A      | 30 A      |

#### OUTPUT 端子盤への接続

- ▲ 警告 ・ 出力端子に触れると感電の恐れがあります。OUTPUT 端子盤への接続には、必ず POWER スイッチをオフして、さらに入力電源プラグを抜くか、配電盤からの給電を遮断してください。
  - POWER スイッチがオンの状態では、OUTPUT オフ(OUTPUT OFF 表示中)で
     も、出力端子とシャシ間に危険な電圧が発生しています。

本機後面には 2 種類の安全カバーがあります。一つは大型のもので、ターミナル ボックス全体用の「ターミナルボックスカバー」です。二つ目は小型のもので、 OUTPUT 端子盤に付いています。こちらは未配線端子に触れないようにするための 「保護板」です。OUTPUT 端子が結線されているとき、「保護板」は使用しません。 このときは指定箇所に取り付けておきます。

- <u>1.</u> POWER スイッチを オフ にして、入力電源プラグをコンセントから抜くか、 配電盤からの給電を遮断してください。
- <u>2.</u> ターミナルボックスのカバーを外します。
- OUTPUT 端子盤の下面に取り付けてある保護板を外します。
   図 2-20にしたがって、指定場所に取り付けます。
- 4. 負荷への出力ケーブルを OUTPUT 端子盤に確実に接続してください。

   負荷に接地(GND)端子がある場合には、必ず本機の OUTPUT 端子盤のG端
   子へ接続してください。この場合、必ず出力ケーブル電線径と同じかそれ以上
   の接地ケーブルを使用してください。
- 5. 手順2で外したターミナルボックスのカバーを取り付けます。



図 2-19 OUTPUT 端子盤への接続





▲ 注意 ・ OUTPUT 端子盤の L、N は入力電源から絶縁されており、極性は特に安全上の 問題にはなりません。しかし、シンクロモード(入力電源との同期)や DC モー ドでは極性が関係するため、負荷の極性を確認して接続してください。接地は、 L、N のどちらでもかまいません。

設置と

使用準

備

# .....

負荷が本機から離れた場所にあって、その場所でリモートコントローラ(RC03-PCR-LA、RC04-PCR-LA)やリモートインターフェース(RS-232CまたはGPIB)を 介して本機を制御している場合があります。

出力ケーブルの電線径は、出力電流に応じて、「8.2入力電源ケーブルの要件」の

・ DC モードでは、N を基準にして、+出力の時は L が+、-出力の時は L が-と

このような状況で、本機から離れたまま負荷を接続したい場合には、感電を防止するために OUTPUT 端子盤と負荷間にスイッチを設け、そのスイッチをオフにしてください。スイッチの負荷側の端子を OUTPUT 端子盤として使用します (図 2-21)。その他の手順は「OUTPUT 端子盤への接続」と同じです。

リモートコントローラ (RC03-PCR-LA、RC04-PCR-LA)、RS-232C コントロール、 または GPIB コントロールでは、OUTPUT オフはできますが、POWER スイッチの オフはできません。負荷を接続するときの感電を防止するため、OUTPUT 端子盤と 負荷間にスイッチを設け、そのスイッチをオフにします。

- ▲ 警告 ・ 感電の恐れがあります。OUTPUT 端子盤と負荷間にスイッチを設置するときは、 必ず POWER スイッチをオフにして、入力電源プラグを抜くか、配電盤からの 給電を遮断してください。
  - ・ スイッチの電流定格は、表 2-1 の最大電流以上にしてください。
  - スイッチの回路は、LとNを同時に遮断できる2極にしてください。
  - ・ 感電の恐れがあります。必ずスイッチをオフにしてから、スイッチの負荷側の 端子に負荷を接続してください。
  - ・ 感電の恐れがあります。OUTPUT オンでは、スイッチの端子に触れないでください。



図 2-21 OUTPUT 端子盤と負荷間のスイッチ

注記

表を参照してください。

OUTPUT 端子盤と負荷の間にスイッチを設ける方法

なります。

#### OUTPUT コンセントへの接続

- <u>1.</u> POWER スイッチを オフ にして、入力電源プラグをコンセントから抜くか、 配電盤からの給電を遮断してください。
- <u>2.</u> 負荷への出力ケーブルを、前面のどちらかの OUTPUT コンセントへ接続して ください。



図 2-22 OUTPUT コンセントへの接続

■OUTPUT コンセントは、下図のような電源プラグ専用です。



図 2-23 電源プラグの形状

■OUTPUT コンセントの電流容量

本機の出力は後面の OUTPUT 端子盤および前面の OUTPUT コンセントの両方から とりだすことができます。OUTPUT コンセントを使用する場合には、次の点に注意 してください。

 ▲ 注意
 OUTPUT コンセントの最大定格電圧は AC 125 Vです。 最大出力電圧: AC 125 V(rms) 最大出力電流: AC 10 A(rms)
 これを超える電圧を出力した状態または DC モードでは、負荷をとらないでく ださい。故障の原因となります。

こと使用

準

備

## ■ OUTPUT コンセントの最大出力電流は 1 つ当たり AC 10 A(rms) です。

・最大出力電流は機種により異なります。

PCR500LA:2つのコンセントの合計で AC5 A(rms)

PCR1000LA:2つのコンセントの合計で AC10 A(rms)

PCR2000LA:1つのコンセント当り AC10 A(rms)

PCR4000LA:1つのコンセント当り AC10 A(rms)

PCR6000LA:1つのコンセント当り AC10 A(rms)

PCR2000LA、PCR4000LA、PCR6000LAでは、上記電流値を超えると、OUTPUT コ ンセントの左側にある CIRCUIT BREAKER が遮断することがあります。このとき CIRCUIT BREAKER の前方に赤いボタンが飛び出します。この場合には、「4.6 保 護機能」を参照してください。

| 注記· | 出力電圧、周波数、負荷力率などにより、上記より低くなることもあります。                 |
|-----|-----------------------------------------------------|
|     | 例: PCR1000LA の場合、出力電圧 115 V、負荷力率 0.7、出力周波数 50 Hz にお |
|     | いて、OUTPUT コンセント2つの合計で最大7.61 A となります。この場合、           |
|     | もし一方のコンセントから5Aの出力電流を取り出すと、他方から取り出す                  |
|     | ことができる電流は 2.61 A となります。力率負荷については「8.4 出力と負           |
|     | 荷について」を参照してください。                                    |
| •   | OUTPUT コンセントでは、一部の性能が低下することがあります。                   |

## 第3章 基本操作

この章では、基本的な操作について説明します。

## 3.1 パネル操作の基本

以下の3つの用語がこれからの操作説明に出てきます。覚えていただくと、操作の 理解が早くなります。

#### ホームポジション(状態)

POWER スイッチを オン にした直後の状態を「ホームポジション」といいます。 (OUTPUT のオン、オフ は問いません。)ホームポジションに他の状態から戻すに は、ESC キー を押します。

#### シフトキー操作

SHIFT キーを押すと、コントロールパネルの SHIFT が点灯します。もう一度 SHIFT キーを押すと、SHIFT が消灯します (トグル動作)。

SHIFT が点灯している状態でキーを押すと、各キーの下に青文字で書かれた機能が 有効になります。

#### ■本書での表し方

例:KEYLOCK (SHIFT, 4)

SHIFT キーを押してから(押し続ける必要はありません)、4を押すことを表わします。

#### ENT 待ち(状態)

操作結果を確定するために、本機が ENT キーを押されるのを待っている状態のこ とを「ENT 待ち」といいます。この状態では、コントロールパネルの ENT が点滅 しています。操作結果を確定したくない場合は ESC キー を押し、取り消すことが できます。



## 3.1.1 ジョグシャトルの使用方法

#### 数值設定

#### ■ ジョグによる数値設定

JOG を右へ回すと表示値が増加し、左へ回すと減少します。表示値は、設定値としてそのつど確定します。(ENT キーを押す必要はありません。)



JOG は、設定値の微調整に便利です。 設定可能範囲を超える数値は無視されます。

#### ■ シャトルによる数値設定

SHUTTLE を右へ回して保持すると、表示値が連続して増加し、左へ回して保持す ると連続して減少します。中立位置に戻すと設定値の変化は止まります。表示値は、 設定値としてそのつど確定します。(ENT キー を押す必要はありません。)

回す角度を大きくすると、数値の変化スピードが速くなります。 スピードは、4段階に変えることができます。 SHUTTLEは、設定値をおおまかに変えるのに便利です。 設定可能範囲を超える数値は無視されます。



| 注記 | • | SHUTTLE を用いた場合には、設定値の変化スピードが速いため、設定値が上が<br>りすぎたり、下がりすぎたりすることがあります。 |
|----|---|--------------------------------------------------------------------|
|    | • | JOGと SHUTTLE を同時に回さないでください。数値が変化しなくなったり、数<br>値の変化スピードが遅くなる場合があります。 |

▲ 注意 ・ 必要範囲外の電圧や周波数が出力されると、本機の負荷を壊したり、オペレータに危険が及ぶおそれがあります。あらかじめ必ず電圧と周波数のリミット値を設定してください。詳細については、「4.2 リミット値の設定」を参照してください。

## 3.1.2 デジット機能の使用方法

#### ■最小桁を指定して数値設定

デジット機能は、電圧または周波数を設定する際に、指定した桁以上の桁だけを ジョグシャトルで変化させる機能です。デジット機能は、電圧や周波数をステップ 状に変化させる場合に便利です。

#### ■ 操作手順

電圧または周波数の設定モードで、以下の操作を行います。(設定モードとは、V キーまたはFキーを押して、電圧または周波数の表示エリアの周りに枠が点灯した 状態です。)電圧のデジット機能は、SET が点灯しているときだけ使用可能です。

#### <u>1.</u> DIGIT (SHIFT, .) キーを押します。

可変指定桁のカーソル(枠の一部)が点滅し、デジットモードになります。こ のモードでは、カーソルが点滅している桁およびその上位桁だけが変化しま す。

DIGIT (SHIFT, .) キーを押すたびに、カーソルが左に移動します。

カーソルが最上位桁にある時にさらに DIGIT (SHIFT, .) キーを押すと、 カーソルは最下位桁に戻ります。

- DIGIT (SHIFT, .) キーを必要な回数だけ押して、カーソルを希望の桁まで動かします。
- <u>3.</u> ジョグシャトルを使用して数値設定を行います。
- 4. デジット機能を終了するには、ESC キーを押します。

\_\_\_\_\_

- 注記 ・ テンキーから数値入力をするとデジット機能は解除されます。指定桁のカーソ ル位置とは無関係に、テンキー入力が可能です。
  - ・ 周波数設定の場合、99.99 Hz と 100.0 Hz との間では小数点が移動しますので指 定桁の表示位置が変わります。

## 基本操作

## 3.1.3 キーロック機能

キーロック機能は、コントロールパネルからの操作を禁止する機能です。出力電圧 や周波数を固定して使用するときに、誤って設定値を変えてしまわないようにしま す。

キーロックモードでも OUTPUT オン、オフが可能です。

イニシャルセットアップ状態では、キーロックモードが解除されています。

#### キーロックの手順

- <u>1.</u> ESC キー を押してホームポジションにします。
- <u>ACCESSED</u> KEYLOCK (SHIFT, 4) キーを押します。
   キーロックモードになり、KEY LOCK が点灯します。
- <u>3.</u> キーロックモードを解除するには、もう一度 KEYLOCK (SHIFT, 4) キーを押 します。

#### オプション機能使用時は自動的にキーロックモードになります

リモートコントローラ (RC03-PCR-LA または RC04-PCR-LA) や GPIB インター フェース、RS-232C コントロールで付加されるオプション機能 (下記) を使用する と、コントロールパネルは自動的にキーロックモードになります。この場合は KEYLOCK (SHIFT, 4) キーでは解除できません。

リモートコントローラ (RC03-PCR-LA または RC04-PCR-LA) を使用した場合と、 GPIB インターフェース、RS-232C コントロールを使用した場合では、解除方法が 異なります。

#### ■ 解除手順

リモートコントローラ (RC03-PCR-LA または RC04-PCR-LA)を使用した場合

リモートコントローラの ESC キー押してホームポジションに戻ります。
 ホームポジションに戻るとキーロックは自動的に解除されます。

#### GPIB インターフェース、RS-232C コントロールを使用した場合

- 1. HOME コマンドを使用してホームポジションに戻ります。
- 2. GP-IB(SHIFT,F) キーを押してリモート状態を解除します。

#### オプション機能

電源ライン異常シミュレーション、シーケンス、特殊波形出力、出力オン、オ フ位相、出力インピーダンス、レギュレーション等をいいます。詳しくは「第 10 章オプション」を参照してください。

## 注記 KEYLOCK キーによる操作でキーロックモードにあるときは、オプション機能 (3-5ページ)を使用すると2重にキーロックがかかったような状態になります。 この場合は、ESC キーや HOME コマンドでホームポジションに戻った後、再び KEYLOCK キーを押して解除します。

## 3.1.4 POWER スイッチを オフ にする直前の内容を記憶します

本機は、以下の値を記憶しています。これらの項目については、POWER スイッチ を オン にしたときには、POWER スイッチを オフ にする直前の設定値で立上がり ます。

出力電圧・周波数の設定値 出力電圧レンジ(100 V/200 V) 出力電圧・周波数・電流のリミット値 出力電圧モード(AC/DC) 電圧・電流・電力の表示モード キーロック 注記 ・記憶メモリの寿命を考慮して、記憶間隔を 10 秒にしています。設定を切り替え てから直ぐに POWER スイッチをオフにした場合は、その設定を記憶しない場 合があります。

## 3.2 出力のオン、オフ

#### 負荷への電力供給と遮断

本機では、OUTPUT キー により、出力が オンの状態(負荷に電力を供給している 状態)とオフの状態(負荷に電力を供給していない状態)を交互に切り替えるこ とができます(トグル動作)。

#### ■ コントロールパネルの表示

出力の オン、オフは、コントロールパネルに次のように表示されます。

出力が オン の状態 :OUTPUT ON が点灯

出力が オフ の状態: OUTPUT OFF が点灯

#### ■ POWER スイッチを オン にした直後の状態

POWER スイッチをオン にした直後、出力はオフになっています。

#### ■ 保護機能が作動した場合

本機の保護機能が作動した場合、出力はオフに切り換わります。詳細は「4.6 保護 機能」を参照してください。

#### ■ オン、オフタイミングとしての出力位相設定

本機のパネル操作では、オン、オフタイミングとしての出力位相設定はできません。 設定するには標準装備の RS-232C コントロールまたは別途オプションが必要です。 詳細については「第9章 RS-232C と GPIB メッセージ解説」または「10.8 出力オン、 オフの位相設定」を参照してください。

#### 出力オン、オフの原理

本機では、機械的なスイッチやリレーによって内部回路と出力を切り離すのではな く、電気的に出力のインピーダンスを上げる方法を採用しています。したがって、 チャタリングのないきれいな波形で出力を オン、オフ することができます。

#### ■ 出力が オフ のときはハイインピーダンス状態

このときのインピーダンス(抵抗 R<sub>OFF</sub>)値は、ほぼ下記のようになります。

- ・出力 100V レンジの時: R<sub>OFF</sub> =約8÷N [kΩ]
- ・出力 200V レンジの時: R<sub>OFF</sub> =約 32 ÷ N [kΩ]

NはPCR-LAシリーズの定格出力容量 [kVA]に相当する数値を示します。

例: PCR2000LA の出力 200 V レンジにおけるインピーダンス

 $R_{OFF} = 約32 ÷ 2 [k\Omega] = 約16 [k\Omega]$ 

## 3.3 出力電圧を設定する

出力電圧の設定には、3つの項目を決めます。

- 1. 出力電圧モード(AC/AC-S/DC)
- 2. 出力電圧レンジ(100 V/200 V)
- 3. 出力電圧値

POWER スイッチを オン にしたときには、POWER スイッチを オフ にする直前の 設定で立ち上がります。

## 3.3.1 出力電圧モード(AC / AC-S / DC)の設定

#### 出力電圧モードは3つ

本機の出力電圧モードは、下記の3モードがあります。出力したい電圧の種類に応 じて、切り替えます。

交流電圧出力モード(AC モード)

交流結合出力モード(AC-S モード)

直流電圧出力モード(DC モード)

一般的な交流出力には AC モードを、トランス等の直流オフセット電圧が問題になる場合には AC-S モードを、直流出力には DC モードをそれぞれ使用します。 AC-S モードの詳細は「8.6 AC モードと AC-S モードの違い」を参照してください。

#### 出力電圧モードの表示

出力電圧モードは、コントロールパネルに次のように表示されます。

#### ■交流電圧出力モード(AC モード)

AC が点灯し、周波数が表示されます(下図の矢印箇所)。



図 3-2 AC モード

## 基本操作

#### ■ 交流結合出力モード(AC-S モード)

AC が点灯し、周波数が表示されます。S-MODE5 が点灯します(下図の矢印 箇所)。



図 3-3 AC-S モード

#### ■ 直流電圧出力モード(DC モード)

周波数表示エリアに dc と表示されます(下図の矢印箇所)。



図 3-4 DC モード

## 出力電圧モードの切り替え手順



AC モードから AC-S モード、さらに DC モードと順番に切り替えます。

- <u>1.</u> 出力が オン のときには、OUTPUT キー を押して、出力を オフ にします。
- <u>2.</u> ESC キー を押して、ホームポジションにします。
- <u>3.</u> AC/DC (SHIFT, 8) キー を押します。
- 4. ENT キー を押して、出力電圧モードを確定します。
- 5. 手順3と4を実行するたびに次のように変わります。

 $\rightarrow$  AC  $\rightarrow$  AC-S  $\rightarrow$  DC -

モードの移行と表示の変化

AC モード→ AC-S モード: AC および S-MODE5 が点滅

AC-S モード→ DC モード:AC と S-MODE5 が点灯したままで +DC が点滅

DC モード→ AC モード:+DC が点灯したままで AC が点滅

- 注記 · 出力電圧モードを変更できるのは、ホームポジションで OUTPUT が オフ のと きだけです。
  - イニシャルセットアップ状態では、交流電圧出力モード(ACモード)になっています。

#### AC + DC = - K

直流に交流が重畳した電圧波形を出力することができます。
 このモードを使用するには、標準装備のRS-232C コントロールまたは別途オプションが必要です。詳細については「第9章 RS-232Cと GPIB メッセージ解説」または「10.9 AC+DC モード」を参照してください。
 注記・出力電圧モードは記憶されます。自動記憶間隔は 10 秒です。設定を切り替えてから直ぐに POWER スイッチをオフにした場合は、その設定を記憶しない場合があります。

# 基本操作

## 3.3.2 出力電圧レンジ(100 V/200 V)の設定

本機の出力電圧レンジは、「100 V レンジ」と「200 V レンジ」の 2 つがあります。 必要に応じて、切り替えることができます。出力電圧レンジは、コントロールパネ ルに次のように表示されます。

100 V レンジ:RANGE の下の 100 V が点灯します。

200 V レンジ: RANGE の下の 200 V が点灯します。

#### 出力電圧レンジの選択

■ AC モードおよび AC-S モード

100 V レンジは、出力電圧設定を 0 V から 152.5 V の範囲で行う場合に使用します。

200 V レンジは、出力電圧設定を 0 V から 305.0 V の範囲で行う場合に使用します。

■ DC モード

100 V レンジは、出力電圧設定を -215.5 V から +215.5 V の範囲で行う場合に使用 します。

200 V レンジは、出力電圧設定を -431.0 V から +431.0 V の範囲で行う場合に使用 します。

\_\_\_\_\_

- 注記 · 100 V レンジから 200 V レンジへの移行では、設定された出力電圧値を保持します。
  - 200 V レンジから 100 V レンジへの移行では、設定された出力電圧値を保持しない場合があります。電圧設定値が 152.5 V を超えている場合は、電圧設定値は強制的に0 V になります。これは 100 V レンジでは設定範囲を外れるためです。

## 出力電圧レンジの切り替え手順



#### ■AC モードで動作させてみる

100 Vから 200 V レンジに、200 Vから 100 V レンジに切り替えます。

AC-S モードおよび DC モードでも操作は同じです。

- 1. 出力が オン のときには、OUTPUT キー を押して、出力を オフ にします。
- <u>2.</u> RANGE (SHIFT, 7) キーを押します。

コントロールパネルの表示は現在の出力電圧レンジにより、次のように変わり ます。

100 V レンジの時:100 V が点灯したままで、200 V が点滅します。200 V レンジの時:200 V が点灯したままで、100 V が点滅します。

3. ENT キー を押して、出力電圧レンジを確定します。



図 3-5 100 V レンジから 200 V レンジに切り替える場合。確定前は 200 V が点滅。





## 3.3.3 出力電圧の設定

出力電圧は OUTPUT オン、オフに無関係に設定可能です。負荷を保護する観点か ら、できるだけ OUTPUT オフにしてから設定することをお勧めします。OUTPUT オンでの設定は、現在の電圧から上昇または下降させる場合に使用すると便利で す。

#### 設定範囲

出力電圧レンジによって設定範囲が異なります。

■ AC モードおよび AC-S モード

100 Vレンジでは、0 Vから 152.5 Vの範囲で設定できます。

200 Vレンジでは、0 Vから 305.0 Vの範囲で設定できます。

#### ■ DC モード

100 V レンジでは、-215.5 V から +215.5 V の範囲で設定できます。

200 V レンジでは、-431.0 V から +431.0 V の範囲で設定できます。

設定手順(OUTPUT OFF の場合)



#### ■AC モードで動作させてみる

操作は AC-S モードおよび DC モードでも同じです。

- <u>1.</u> ESC キー を押して、ホームポジションにします。
- 2. Vキーを押して電圧設定モードにします。
   SETと電圧表示エリアの周りに枠が点灯します。設定が可能な状態になったことを示します。

章

基

本

操

作

- <u>3.</u> テンキー(0~9)を用いて電圧値を入力し、ENT キー で確定します。
   設定可能範囲外の電圧を設定し ENT キーを押すと、その値は無視されて、手順2の状態に戻ります。
- <u>4.</u> テンキー入力中に操作を取り消して手順2へ戻るには、ENT待ちのときに ESC キーまたは CLR キー を押します。
- 5. 電圧設定モードを終わるには、ESC キー または F (周波数を設定する場合) キーを押します。



■ DC モードで動作させてみる

操作は AC モードと同じです。DC モードでは極性を設定します。

- <u>1.</u> ESC キー を押して、ホームポジションにします。
- AC/DC (SHIFT, 8) キー を押します。
   電圧表示エリアの左に極性(+/-)が表示されます。
- <u>3.</u> 極性を反転させるには + / -- (SHIFT, 0) を押します。
- 4. テンキー(0~9)を用いて電圧値を入力し、ENT キー で確定します。

#### 設定手順(OUTPUT ON の場合)

設定値を見ながら設定する方法と、出力値を見ながら設定する方法があります。

#### 設定値を見ながら設定する方法

- 1. OUTPUT オフで適切な電圧値に設定します。
- <u>2.</u> OUTPUT オンにします。
- <u>3.</u> V MODE (SHIFT, V) キーを押します。
   V MODE (SHIFT, V) キーを押すたびに、次のように電圧表示モードが変わります。

電圧表示モードの詳細は「4.1 出力表示の切り替え」を参照してください。



- ▲ 注意
   ・ 必要範囲外の電圧が出力されると、本機の負荷を壊したり、オペレータに危険が及ぶおそれがあります。あらかじめ電圧のリミット値を設定してください。詳細については、「4.2 リミット値の設定」を参照してください。
  - 本機の出力インピーダンスは非常に低いため、負荷によっては 0.0 V の設定でも 電流が流れることがあります。電流を流したくない場合や負荷を接続する場合 には、必ず OUTPUT を オフ にするか POWER スイッチを オフ にしてくださ い。

## ジョグシャトルを用いた設定手順

OUTPUT オン、オフの場合によって操作が異なります。ジョグシャトルの操作は 「3.1.1 ジョグシャトルの使用方法」を参照してください。

#### ■ OUTPUT OFF の場合

電圧設定モードの場合、テンキーと同様に設定ができます。

#### ■ OUTPUT ON の場合

設定値を見ながら設定する方法と、出力値を見ながら設定する方法があります。

#### 設定値を見ながら設定する方法

- <u>1.</u> OUTPUT オフで適切な電圧値に設定します。
- <u>2.</u> OUTPUT オンにします。
- V MODE (SHIFT, V) キーを押します。
   V MODE (SHIFT, V) キーを押すたびに、次のように電圧表示モードが変わります。

電圧表示モードの詳細は「4.1 出力表示の切り替え」を参照してください。





- <u>4.</u> SET が点灯するまで V MODE (SHIFT, V) キーを繰り返し押します。
- <u>5.</u> Vキーを押して電圧設定モードにします。

電圧表示エリアの周りに枠が点灯します。設定値を見ながら設定する方法になりました。

<u>6.</u> ジョグシャトルで電圧値を増減させます。

#### 出力値を見ながら設定する方法

設定値を見ながら設定する方法の手順1から3を行った後、下記の手順4から7に 従ってください。

- <u>4.</u> SET 以外を選択したら V MODE (SHIFT, V) キーの操作を止めます。
- 5. Vキーを押します。

電圧表示エリアの周りに枠が点灯します。出力値を見ながら設定する方法になりました。

6. ジョグシャトルで電圧値を増減させます。

 注記・出力値を見ながら設定する方法では、出力端子電圧が表示されます。表示応答 速度が遅いので、ジョグシャトルによる増減をやりすぎる恐れがあります。表 示応答速度が感覚的につかめるまでは、小刻みに操作してください。

・ 出力電圧設定は記憶されます。自動記憶間隔は 10秒です。設定を切り替えてから直ぐに POWER スイッチをオフにした場合は、その設定を記憶しない場合があります。

## 3.4 周波数の設定

#### 周波数の設定

AC モードおよび AC-S モードでは、周波数を設定することができます。周波数設 定モードに入ることができるのは、ホームポジションまたは電圧設定モードの時だ けです。OUTPUT オン、オフに無関係に設定可能です。負荷を保護する観点から、 できるだけ OUTPUT オフにしてから設定することをお勧めします。

イニシャルセットアップ状態では、50.00 Hz になっています。

#### 設定範囲

1.00 Hz から 999.9 Hz の範囲で設定できます。

#### 周波数の設定手順



- <u>1.</u> ESC キー を押して、ホームポジションにします。
- Fキーを押して周波数設定モードにします。
   周波数表示エリアの周りに枠が点灯し、設定が可能な状態になったことを示します。
- <u>3.</u> テンキー(0~9)を用いて周波数を入力し、ENT キーを押して確定します。
   周波数の設定は JOG および SHUTTLE でも可能です。詳細については、「3.1.1 ジョグシャトルの使用方法」を参照してください。
   設定可能な範囲外の周波数を設定しようとすると、その値は無視されて、手順2の状態に戻ります。
- 周波数設定モードを終えるには、ESC キー または V (電圧を設定する場合) キーを押します。



図 3-8 周波数表示エリア

| ▲ 注意   | <ul> <li>必要範囲外の周波数が出力されると、負荷を壊したり、オペレータに危険が及ぶおそれがあります。あらかじめ周波数のリミット値を設定してください。評細については、「4.2 リミット値の設定」を参照してください。</li> </ul>                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                         |
| <br>注記 | <ul> <li>AC モードと AC-S モードでは、低周波数域での性能が異なります。詳しくは「8.6 AC モードと AC-S モードの違い」および「11.1 本体部仕様」を参照してください。</li> <li>周波数設定は記憶されます。自動記憶間隔は 10 秒です。設定を切り替えてから直ぐに POWER スイッチをオフにした場合は、その設定を記憶しない場合があります。</li> </ul> |

応用操作

## 第4章 応用操作

この章では、応用操作について説明します。出力の表示切り替えや、保護機能について説明します。

## 4.1 出力表示の切り替え

出力を把握するために、以下の表示モードを切り替えて使用します。交流、直流、 電圧、負荷電流、電力、周波数、LOAD レベルを表示することができます。

表示モードは大別すると2種類になります。電圧表示モードは、「設定電圧表示」と 「測定電圧表示」に分かれます。電流・電力表示モードは測定値のみを表示します。

- 1. 電圧表示モード
  - ・設定電圧表示
  - ・測定電圧表示
- 2. 電流・電力表示モード
  - ・測定電流表示

表示部の全容は「5.1.2 コントロールパネル表示部」を参照してください。

注記 · 表示モードは記憶されます。自動記憶間隔は 10 秒です。設定を切り替えてから 直ぐに POWER スイッチをオフにした場合は、その設定を記憶しない場合があ ります。

## 4.1.1 電圧表示モードの切り替え

下表に示すモードがあります。モードに応じた単位が表示されます。

| 電圧表示モード           | 表示記号 |
|-------------------|------|
| 実効値表示(RMS)        | RMS  |
| ピーク値表示 (PEAK)     | PEAK |
| 平均値表示:DC モードでのみ有効 | なし   |
| 設定電圧表示 [SET]      | SET  |

詳細は「8.7 電圧表示モードと測定方式」で解説しています。



#### ■ 切り替え手順

V MODE (SHIFT, V) を押します。

V MODE (SHIFT, V) キーを押すたびに、次のように電圧表示モードが変わります。



## 4.1.2 電流・電力表示モードの切り替え

下表に示すモードがあります。モードに応じた単位が表示されます。

| 電流・電力表示モード          | 表示記号 |
|---------------------|------|
| 電流実効値表示(RMS)        | RMS  |
| 電流ピーク値表示 (PEAK)     | PEAK |
| 電流平均値表示:DC モードでのみ有効 | なし   |
| 電力表示(W)             | W    |

詳細は「8.8 電流・電力表示モードと測定方式」で解説しています。

LIMIT RMS PEAł

図 4-2 電流・電力表示エリア

■ 切り替え手順

I MODE (SHIFT, I) キーを押します。

I MODE (SHIFT, I) キーを押すたびに、次のように電流・電力表示モードが変わります。



LOAD レベルメータ



図 4-3 LOAD レベルメータ

LOAD レベルメータは、負荷に流れる電流を検出して、定格電流値に対する負荷電 流値の割合をバーグラフに表示します。負荷電流供給能力を知る目安として利用し てください。

■リミット値を設定した場合

LOAD レベルメータのフルスケールは、定格電流値より小さいリミット値を設定すると、そのリミット値が優先設定されます。

詳細は「4.2 リミット値の設定」および「8.10 LOAD レベルメータ動作例」を参照 してください。

## 4.2 リミット値の設定

接続する負荷の条件に合わせてあらかじめ設定しておくことで、負荷の故障を未然 に防止できる機能です。以下の3種類が設定できます。

- 1. 電圧リミット値
- 2. 周波数リミット値
- 3. 電流リミット値

ここではリミット値を以下のように定義します。

| 電圧リミット値  | 電圧の設定範囲を制限します。<br>上限値(ハイリミット値)と下限値(ローリミット<br>値)があります。  |
|----------|--------------------------------------------------------|
| 周波数リミット値 | 周波数の設定範囲を制限します。<br>上限値(ハイリミット値)と下限値(ローリミット<br>値)があります。 |
| 電流リミット値  | 出力電流実効値の上限値。上限値を超えた時に、出力<br>を オフ します。                  |
| リミット値    | 上記各リミット値の総称                                            |

負荷の異常により、本機の出力電流が通常の使用状態よりも大きくなった場合に は、負荷が焼損するおそれがあります。また、負荷用の電線が細い場合には、電線 が焼損することがあります。このような場合に備えて、電流リミット値を設定して ください。電線の選択については、「8.2入力電源ケーブルの要件」の表を参照して ください。

#### ■ リミット値設定の概要



## 4.2.1 電圧リミット値

■交流電圧(AC モードおよび AC-S モード)と直流電圧(DC モー ドおよび AC+DC モード)

電圧リミット値は交流電圧(AC モードおよび AC-S モード)と直流電圧(DC モー ドおよび AC+DC モード)のそれぞれに、下限値および上限値を設定することがで きます。

AC モードおよび AC-S モードでリミット値を設定すると、交流のリミット値になり、DC モードおよび AC+DC モードでリミット値を設定すると、直流のリミット 値になります。

AC+DC モードの詳細については「第9章 RS-232C と GPIB メッセージ解説」、「10.9 AC+DC モード」または、各オプションの取扱説明書を参照してください。

#### ■ 電圧リミット値の設定可能範囲

各モードにおける設定可能範囲を示します。

| 出力電圧モード   | レンジ            | ローリミット  |            | ハイリミット            |  |
|-----------|----------------|---------|------------|-------------------|--|
| AC モード    | 200 V          | <b></b> | 0 [Vrma]   | 态法 205 0 [Vrms]   |  |
| AC-S モード  | AC-S モード 100 V |         | 0 [ v misj | 文派 505.0 [VIIIIS] |  |
| DC モード    | 200 V          | 古法      | 421.0 [3/] | 直法 ↓421.0.[\/]    |  |
| AC+DC モード | 100 V          | 旦仉      | -431.0[V]  |                   |  |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

いったんリミット値を設定すると、リミット値設定範囲外を入力することはできま せん。0Vだけはリミット値設定範囲外でも、キー操作で入力できます。ハイリミッ ト値を越えた値やローリミット値未満の値を入力すると、その値は無視されて前の 値に戻ります。

#### 設定手順



- <u>1.</u> ESC キー を押して、ホームポジションにします。
- LIMIT(SHIFT, 1) キーを押して、リミット値表示モードにします。
   HIGHとLIMIT が点灯し、電圧、周波数、電流のハイリミット値が表示されます。
- 3. Vキーを押して、電圧リミット値設定モードにします。
   この時、ハイリミット値設定モードになっています。
   電圧表示エリアの周りに枠が点灯し、設定が可能な状態になったことを示します。
- 4. ハイリミット値を設定します。

テンキーまたは ジョグシャトル で設定します。



図 4-4 電圧ハイリミット値設定

- <u>5.</u> LIMIT(SHIFT, 1) キーを押して、ローリミット値設定モードにします。 この時は LOW LIMIT が点灯します。
- 6. Vキーを押して、電圧リミット値設定モードにします。
- <u>7.</u> ローリミット値を設定します。



図 4-5 電圧ローリミット値設定

- 8. ESC キー を押して、電圧表示エリアの枠を消します。
- 9. もう一度 ESC キーを押して、電圧リミット値設定モードを終えます。

#### ■ ハイリミット値とローリミット値の切り替え

電圧リミット値設定モードでは、LIMIT (SHIFT, 1) キーを押すことにより、ハイリ ミット値とローリミット値の設定モードを切り替えることができます。 ハイリミット値設定モード
 ↓ LIMIT (SHIFT, 1) ↑
 □ーリミット値設定モード
 LOW LIMIT

■ リミット値は OUTPUT が ON の状態でも設定できます。

手順1から7にしたがって設定できます。

#### 他のリミット値設定モードへ移動

Fキーを押すことにより、周波数リミット値設定モードに移動できます。

Iキーを押すことにより、電流リミット値設定モードに移動することができます。ただし、ローリミット値設定モードになっている場合には、Iキーを押しても電流リミット値設定モードには移行できません。電流リミット値にはローリミット値はありません。

ESC キー を押すことにより、リミット値表示モードに戻り、さらに ESC キー を押 すことにより、ホームポジションに戻ります。

## 4.2.2 周波数リミット値

#### ■ 周波数リミット値の設定可能範囲

周波数リミット値の設定可能範囲は、本機の最大可変範囲です。各モードにおける 数値を下表に示します。

| 出力電圧モード   | レンジ   | ローリミット                 | ハイリミット     |
|-----------|-------|------------------------|------------|
| AC モード    | 200 V | 1.00 [[1-] 000 0 [[1-] |            |
| AC-S モード  | 100 V | 1.00 [HZ]              | 999.9 [HZ] |
| DC Full   | 200 V | 設定できません                |            |
|           | 100 V |                        |            |
| AC+DC チード | 200 V | AC モードまたは AC-S モード     |            |
|           | 100 V | の設定が有効                 |            |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

いったんリミット値を設定すると、リミット値設定範囲外を入力することはできま せん。



- <u>1.</u> ESC キー を押して、ホームポジションにします。
- LIMIT (SHIFT, 1) キーを押して、リミット値表示モードにします。
   HIGHとLIMIT が点灯し、電圧、周波数、電流のハイリミット値が表示されます。
- Fキーを押して、周波数リミット値設定モードにします。
   この時、ハイリミット値設定モードになっています。
   周波数表示エリアの周りに枠が点灯し、設定が可能な状態になったことを示します。
- 4. ハイリミット値を設定します。テンキーまたは ジョグシャトルで設定します。



図 4-6 周波数ハイリミット値設定

- <u>5.</u> LIMIT(SHIFT, 1) キーを押して、ローリミット値設定モードにします。 この時は LOW LIMIT が点灯します。
- 6. ローリミット値を設定します。



図 4-7 周波数ローリミット値設定

<u>7.</u> ESC キー を押して、周波数表示エリアの枠を消します。

8. もう一度 ESC キーを押して、周波数リミット値設定モードを終えます。

#### ■ハイリミット値とローリミット値の切り替え

周波数リミット値設定モードでは、LIMIT (SHIFT, 1) キーを押すことにより、ハイ リミット値とローリミット値の設定モードを切り替えることができます。

| ハイリミット値設定モード         | HIGH LIMIT |
|----------------------|------------|
| ↓ LIMIT (SHIFT, 1) ↑ |            |
| ローリミット値設定モード         | LOW LIMIT  |

#### 他のリミット値設定モードへ移動

V キーを押すことにより、電圧リミット値設定モードに移動できます。

Iキーを押すことにより、電流リミット値設定モードに移動することができます。ただし、ローリミット値設定モードになっている場合には、Iキーを押しても電流リミット値設定モードには移行できません。電流リミット値にはローリミット値はありません。

ESC キー を押すことにより、リミット値表示モードに戻り、さらに ESC キー を押 すことにより、ホームポジションに戻ります。

#### 4.2.3 電流リミット値

#### ■交流電流(AC モードおよび AC-S モード)と直流電流(DC モー ドおよび AC+DC モード)

電流リミット値は交流電流(ACモードおよびAC-Sモード)と直流電流(DCモー ドおよびAC+DCモード)のそれぞれに、上限値を設定することができます。 ACモードおよびAC-Sモードでリミット値を設定すると、交流のリミット値にな り、DCモードおよびAC+DCモードでリミット値を設定すると、直流のリミット 値になります。

AC+DC モードの詳細については「第9章 RS-232C と GPIB メッセージ解説」、「10.9 AC+DC モード」または、各オプションの取扱説明書を参照してください。
#### ■ 電流リミット値の設定可能範囲

電流リミット値の設定可能範囲は、下表に示すモードにおいて、定格最大出力電流の10%~110%以内です。実効値で設定します。設定されている出力電圧や周波数により、出力電流に制限がある場合は、この制限が優先されます。詳細は「8.4 出力と負荷について」を参照してください。

| 出力電圧モード   | レンジ   | ローリミット  | ハイリミット                     |
|-----------|-------|---------|----------------------------|
| ACモード     | 200 V | 記字できませく | 交流                         |
| AC-S モード  | 100 V | 取座しるよせん | 1.1 	imes Iac [Arms]       |
| DC モード    | 200 V | 設定できません | 直流                         |
| AC+DC モード | 100 V | 取座くさよどの | $1.1 	imes 	ext{ Idc} [A]$ |

定格最大出力電流

| 形名        | IAC [Arms] | IDC [A] |
|-----------|------------|---------|
| PCR500LA  | 5          | 2.5     |
| PCR1000LA | 10         | 5       |
| PCR2000LA | 20         | 10      |
| PCR4000LA | 40         | 20      |
| PCR6000LA | 60         | 30      |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

#### ■ 電流リミット動作

電流リミット値を越える電流が流れたとき、コントロールパネルの OVER LOAD が 点灯し、出力電圧は垂下します。この状態が約 10 秒間(AC モード、AC-S モード 時)または約 1 秒間(DC モード時)続くと、自動的に出力がオフ になります。 電流リミット機能は電流の実効値で作動します。このため、コンデンサインプット 型整流負荷における最大ピーク電流とは直接関係ありません。

### 設定手順



- <u>1.</u> ESC キー を押して、ホームポジションにします。
- LIMIT (SHIFT, 1) キーを押して、リミット値表示モードにします。
   HIGH と LIMIT が点灯し、電圧、周波数、電流のハイリミット値が表示されます。
   電流リミット値はハイリミット値だけです。
- 3. Iキーを押して、電流リミット値設定モードにします。
   電流表示エリアの周りに枠が点灯し、設定が可能な状態になったことを示します。
- 4. リミット値を設定します。テンキーまたは ジョグシャトル で設定します。



図 4-8 電流リミット値設定

- 5. ESC キー を押して、電流表示エリアの枠を消します。
- 6. もう一度 ESC キー を押して、電流リミット値設定モードを終えます。

#### 他のリミット値設定モードへ移動

V キーを押すことにより、電圧ハイリミット値設定モードに移動できます。

F キーを押すことにより、周波数ハイリミット値設定モードに移動することができます。

ESC キー を押すことにより、リミット値表示モードに戻り、さらに ESC キー を押 すことにより、ホームポジションに戻ります。

#### LOAD レベルメータ

電流リミット値を設定するとコントロールパネルの LOAD レベルメータは電流リ ミット値をフルスケールとして表示します。ただし、定格電流の方が電流リミット 値よりも低い場合には、定格電流がフルスケールとなります。詳細は「8.10 LOAD レベルメータ動作例」を参照してください。

# 応 用 操 作

# 4.3 メモリ機能

電圧と周波数の設定値をあらかじめメモリに記憶させておいて、読み出して使用す ることができます。頻繁に用いる電圧と周波数の値は、この機能を用いてメモリに 書き込んでおくと便利です。

メモリ機能は電圧と周波数の値を1組として、メモリに書き込んだり、読み出して 使用することができる機能です。DC モードでは、電圧だけの読み書きを行うこと ができます。メモリは9組を設定できます。設定(書き込み)が可能なメモリ番地 は1~9です。

イニシャルセットアップ状態など、詳細は「8.12メモリ機能の応用」を参照してく ださい。

### メモリへの書き込み手順

#### ■ 準備

- <u>1.</u> 出力電圧モード(AC/DC)を選択します。
- 記憶させたい電圧(および周波数)を設定します。 2. DC モードでは、電圧だけを設定します。 AC モードおよび AC-S モードでは、電圧と周波数を設定します。
- 3. ESC キー を押して、ホームポジションにします。

#### ■ 書き込み

- 4. STORE (SHIFT, MEM) キーを押します。
- 1~9のどれかを押して、書き込み先のメモリ番地を選びます。 5. ジョグシャトルを回してもできます。

電流表示エリアに Ad.X (X はメモリ番地)と表示され、STORE が点滅します。



図 4-9 メモリ書き込み

6. 確定してよければ、ENT キー を押します。取り消したい場合には、ESC キー を押します。

電圧と周波数が組になってメモリに書き込まれます。

・DC モードでは、電圧だけが書き込まれます。

・ACモードおよび AC-Sモードでは、電圧と周波数が書き込まれます。

#### メモリ読み出し手順

#### ■準備

- <u>1.</u> 出力電圧モード(AC/DC)を選択します。
- <u>2.</u> ESC キー を押して、ホームポジションにします。

#### ■読み出し

<u>3.</u> MEM キー を押します。

読み出されます。

- <u>4.</u> 0~9のいずれかを押して、読み出したいメモリ番地を選びます。
   ジョグシャトルを回してもできます。
   電流表示エリアには Ad.X (X =メモリ番地)と表示され、電圧表示エリアおよび周波数表示エリアには、そのメモリ番地に記憶されている電圧と周波数が
  - ・DC モードでは、電圧だけが読み出されます。

・ACモードおよび AC-Sモードでは、電圧と周波数が読み出されます。



図 4-10 メモリ読み出し

<u>5.</u> 読み出された値を設定値として確定してよければ、ENT キー を押します。取り消したい場合には、ESC キー を押します。

注記
 リモートコントローラ (RC04-PCR-LA)、GPIB インターフェース (IB03-PCR-LA)、RS-232C コントロールのいずれかを使用すると、アクセス可能なメモリは 99 組まで増やすことができます。この時、メモリ番地1~9はコントロールパ ネルとオプションのどちらからでもアクセスすることができます。詳細につい ては「10.10 メモリ機能の拡張」または各オプションの取扱説明書を参照してく ださい。

# 4.4 シンクロ機能

シンクロ機能は、本機の出力電圧の周波数と位相を、入力電源の 50 Hz または 60 Hz に同期させる(シンクロさせる)機能です。

シンクロモードでは、周波数リミット機能は作動しません。

POWER スイッチをオフ にしたときは、シンクロモードは解除されます。

#### シンクロモードの設定手順

- <u>1.</u> ESC キー を押してホームポジションにします。
- <u>2.</u> SYNC (SHIFT, 9) を押します。

シンクロモードになり、SYNC が点滅します。

本機が周波数と位相を合わせようとしています。

数秒経過すると、SYNC は点灯にかわり、周波数と位相が同期したことを表わ します。 50 Hz または 60 Hz のどちらに同期したかは、周波数表示エリアに表 示されます。



3. シンクロモードを終了するには SYNC(SHIFT, 9) を押します。

#### シンクロモードを解除したときの周波数

■ シンクロ時の周波数(50 Hz または 60 Hz)が周波数リミット範囲内の場合

周波数は同期していた 50 Hz または 60 Hz のどちらかに設定されます。

# ■ シンクロ時の周波数(50 Hz または 60 Hz)が周波数リミット範囲外の場合

周波数リミット機能が作動します。

シンクロ時の周波数(50 Hz または 60 Hz)がローリミットより低い場合、周波数 はローリミット値になります。

シンクロ時の周波数 (50 Hz または 60 Hz) がハイリミットより高い場合、周波数は ハイリミット値になります。 応

用操

作

# 4.5 センシング機能

本機から遠い場所に負荷をつないで、その場所(センシングポイント)の電圧を安 定化させたい場合に使用します。本機の「センシング機能」は、通常の直流電源の 「リモートセンシング(リアルタイムで瞬時に電圧を補正する機能)」とは、大きな 違いがあります。

センシングポイントの電圧を本機の測定機能により測定して、電圧の不足分を自動 的に補正する方式です。この方式では電圧の安定度、負荷電流の急変による出力電 圧の応答性、波形の質(歪率)などにおいて、通常使用より性能が低下します。

AC モード、AC-S モード、および DC モードで使用できます。DC モードのセンシ ング機能においても、通常の直流電源のリモートセンシングより性能が低下しま す。

詳細は「8.11 センシング機能の方式」を参照してください。

注記 ・ センシング機能作動中は、出力電圧を変化させることはできません。あらかじめ電圧を設定してからセンシング機能を作動させます。

### センシング機能の操作手順



▲ 警告 ・ 感電の恐れがあります。死亡または傷害を追う可能性があります。 負荷およびセンシングケーブルを接続する前に、POWER スイッチを オフ にして、入力電源プラグをコンセントから抜くか、配電盤からの給電を遮断してください。

# 応用操作

#### ■ 接続方法

1. 下図のように接続します。



ターミナルボックス部( 機種により形状が多少異なります。)

図 4-11 センシング端子盤の結線方法

▲警告 ・ 感電の恐れがあります。ターミナルボックスのカバー着脱は確実に行ってください。詳細は「2.8 負荷の接続」を参照してください。

#### ■ 設定

- <u>2.</u> センシングポイントにおいて安定化させたい電圧と周波数を設定します。DC モードでは、電圧だけを設定します。
- <u>3.</u> ESC キー を押して、ホームポジションにします。
- SENSING (SHIFT, 5) キーを押します。
   センシング機能が作動状態になり、SENSING が点灯します。
- 5. センシング機能を停止するには SENSING (SHIFT, 5) キーを押します。

#### センシング機能作動中におけるアラーム発生の対処

#### ■ アラーム発生の条件とアラーム動作

センシングポイントの電圧が、本機の出力端子電圧に対して約 10 % 以上の差があ ると、検出後数秒でブザーの断続音と共に SENSING が点滅し、アラームを発生し ます。

同時に、負荷を保護するために出力がオフされます。

この状態が発生した場合には、本機から負荷への配線を太く短かくするなどの処置 を施して、電線の電圧降下をできるだけ小さくしてください。

注記・本機の出力電圧設定値が小さくなるにしたがって、検出電圧も小さくなります。
 本機の出力電圧設定値が小さい場合は、負荷への配線を太く短かくするなどの
 処置を施して、電線の電圧降下をできるだけ小さくしてください。

#### ■アラームの解除

POWER スイッチをオフにするかALM CLR (SHIFT, CLR) キーを押します。

# 4.6 保護機能

### 保護機能の種類とアラームの発生

本機は、次のような保護機能を備えています。アラームの発生は、ALARM 点灯 とオーバーロードをともなう ALARM 点灯があります。

| 保護機能                | 種類                        |  |
|---------------------|---------------------------|--|
| 入力電圧定格範囲外保護         | エラー5 を発生                  |  |
| 内部過熱保護              | アラーム2を発生                  |  |
| 内部回路保護              | アラーム 1,4,5 を発生            |  |
| 過負荷保護(電流リミット機能)     | OVERLOAD 点灯<br>アラーム 6 を発生 |  |
| 内部過負荷保護 (内部半導体部品保護) | OVERLOAD 点灯<br>アラーム 3 を発生 |  |
| センシング異常検出           | アラーム7を発生                  |  |
| 電力ユニット ID 異常検出      | アラーム8を発生                  |  |

保護機能が作動した場合には、必ず出力が オフになります。

# 応用操作

# 4.6.1 アラーム発生時の操作

アラームが発生すると、ブザーの断続音とともに ALARM が点灯するか、Err X (X は数字)が表示されます。(Err 表示のときにはブザーは鳴りません。)このとき、 故障の拡大および負荷の破損を防止するために、異常の原因に応じた保護機能が作 動します。

\_\_\_\_\_

注記 · アラームが発生した場合には、必ず出力がオフになります。 アラームの原因によっては、本機が故障していないこともあります。そのよう な場合には、アラームを解除した後、通常どおりに使うことができます。

### ALARM が点灯したときの操作手順

- <u>1.</u> 必ず POWER スイッチを オフ にしてください。
- <u>2.</u> POWER スイッチをオフ にして5 秒以上経過した後、再び オン にします。 このときアラームが発生しなければ、引き続き使用することができます。 再びアラームが発生した場合には、下記の SELF TEST に従ってアラームの種類を確認し、アラームの種類に応じた操作を行います。

#### ■ アラームの種類の確認手順 (SELF TEST)

- ALARM が点灯しているときに、SELF TEST (SHIFT, 3) キーを押します。
   電流表示エリアに No.X と表示され、電圧表示エリアに Ad.X と表示されます。
   No.X はアラーム No. (表 4-2 参照) で、Ad. は本機内部の電力ユニット No. (表 4-1 参照) です。
- JOG を回すと電流表示エリアと電圧表示エリアの内容が変わりますので、Ad. が表示されているときのアラーム No. を読みます。
- <u>5.</u> 表 4-2 に従って、表示されたアラーム No. に対応する対処方法を実行します。 アラーム(8)のみはクリアして使用することができます。

#### ■ アラーム(8)のクリア手順

- ALM CLR (SHIFT, CLR) キーを押します。
   アラームをクリアすると、出力電圧の設定値は 0V になります。
- <u>7.</u> ブザーの断続音とアラーム表示が消えたら、もう一度 SELF TEST (SHIFT, 3) キーを押して、アラームの種類を確認します。
   Ad.の1から最終No.(機種により異なる)までのアラームの有無を確認します。
   アラームがない場合には、引き続いて使用することができます。
   すべてアラームでしたら使用できません。お買い上げ元または当社営業所に連 絡してください。

#### SELF TEST で表示される Ad.No.

表 4-1 Ad.No.

| Ad.No.     | 該当機種      |
|------------|-----------|
| 0          | 本体全体      |
| 1          | PCR1000LA |
| $1 \sim 2$ | PCR2000LA |
| $1 \sim 4$ | PCR4000LA |
| $1 \sim 6$ | PCR6000LA |

上側から順番に番号が付けられています。

#### SELF TEST で表示されるアラーム No.

表 4-2 アラーム No. と対処方法

| アラーム No. | 対処方法                                                                                                                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | アラームはありません。                                                                                                                                                                                                                         |
| 1        | 内部回路保護が作動しました。お買い上げ元または当社営業所<br>に連絡してください。                                                                                                                                                                                          |
| 2        | 内部の温度が異常に高くなっていることが考えられます。電源<br>をオンにしたまま 10分ほど待ってください。<br>アラームが発生し続けている場合は、「2.5入力電源の接続」を<br>確認してください。<br>アラームが発生しなくなった場合は、本機の設置方法に不備が<br>考えられます。「2.2 設置場所の注意」を確認してください。<br>いずれの場合も不備がなければ、本機の使用を直ぐに中止して、<br>お買い上げ元または当社営業所にご連絡ください。 |
| 3        | 内部半導体保護機能が作動しました。「8.5 過負荷保護機能」を<br>参照してください。                                                                                                                                                                                        |
| 4        | 内部回路保護機能が作動しました。本機の使用を直ぐに中止し                                                                                                                                                                                                        |
| 5        | て、お買い上げ元または当社営業所にご連絡ください。                                                                                                                                                                                                           |
| 6        | 電流リミット機能が作動しました。「8.5 過負荷保護機能」を参<br>照してください。                                                                                                                                                                                         |
| 7        | センシング機能が正しく使用されていません。「4.5 センシング<br>機能」を参照してください。<br>出力電圧が設定値の+10%以上になっている可能性があります。<br>センシングでの対処を実施してもなおアラーム解除ができない<br>場合は、本機の使用を直ぐに中止して、お買い上げ元または当<br>社営業所にご連絡ください。                                                                 |
| 8        | 該当する電力ユニットが取り外されている可能性があります。<br>「■ アラーム(8)のクリア手順」を参照してください。                                                                                                                                                                         |

注記

・ 修理依頼をする際には、アラーム No. をお知らせください。

### Err X が表示されたときの確認

異常がある場合には、コントロールパネルに Err X(Xは数字)が表示されたまま になります。Err表示が出た場合は、必ず POWER スイッチをオフにし表 4-3 に従っ て対処してください。

表 4-3 Err 番号と対処方法

| Err X    | 対処方法                                                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 内部の電力ユニットすべてに異常が発生しています。本機の使<br>用を直ぐに中止して、お買い上げ元または当社営業所に連絡し<br>てください。                                                                             |
| 2        | 内部の信号通信に何らかの異常が発生しています。POWER ス<br>イッチをオフにし 5 秒以上経過した後、再び ON にします。<br>Err が発生しなければ引き続き使用することができます。<br>再び Err が発生した場合には、お買い上げ元または当社営業所<br>に連絡してください。 |
| 4        | 本体内部でエラーが発生しました。POWER スイッチを オフ に<br>します。5秒以上経過した後、MEM キー を押しながら<br>POWER スイッチを オン にします。その後リセット操作を実行<br>してください。イニシャルセットアップ状態になります。                  |
| 5        | 入力電圧が定格範囲外になっています。「2.5 入力電源の接続」<br>を参照してください。                                                                                                      |
| その他の No. | お買い上げ元または当社営業所に連絡してください。                                                                                                                           |

### アラームをクリアして一時的に使用する場合

アラームが発生した Ad. (電力ユニット No.) とアラームのない Ad. が混在してい る場合には、アラームをクリアして一時的に使用することができます。この場合、出力は以下のように制限されます。

#### ■ 使用可能な電力および電流

使用可能な電力および電流は以下の式で求めます。

アラームのない Ad. の数を Na とします。

該当機種での、電力ユニット総数による Ad. の数を Nbとします。

使用可能電力=該当機種の定格電力×Na÷Nb

使用可能電流=該当機種の定格電流× Na÷Nb

例:PCR6000LA の場合 Nb = 6

アラームでない Ad. の数が2の場合 Na = 2

使用可能電力= 6000 × 2 ÷ 6 = 2000 [W]

使用可能電流= 60 × Na÷ Nb (100 V レンジ) = 20 [A]

注記 · 一時的に使用する場合の方法です。アラームが発生した電力ユニットに対して は、表 4-2 および表 4-3 の対処方法を優先してください。

# 4.6.2 オーバーロードをともなう ALARM 点灯

オーバーロード発生が持続した場合には、出力が オフ になり、ブザーの断続音と 共に OVER LOAD が点灯します。アラーム3または6が発生し、過負荷保護が作動 していることを示します。保護動作は以下の2種類です。

#### ■過負荷保護(電流リミット機能)

本機の出力電流値が電流リミット値(最大設定:定格出力電流の1.1倍)を超えた ときに作動する電流リミット機能です。電流リミット値を超える電流が負荷に流れ た場合には、OVER LOAD が点灯し、出力電圧は垂下します。その状態が約10秒 間(ACモード、AC-Sモード時)または約1秒間(DCモード時)続くと、自動的 に出力はオフになります。詳細については、「4.2.3電流リミット値」を参照してく ださい。

#### ■ 内部過負荷保護(内部半導体保護)

本機内部の半導体保護機能です。本機の使用方法がその仕様に適合していれば、内 部の半導体保護機能は作動することはありません。しかし突入電流などの一時的な 過電流が発生した場合には、内部の半導体保護機能が作動し、その状態が数秒間続 くとオーバーロードになります。

内部半導体保護機能の作動後数秒間はオーバーロードになりません。しかしこの間 では、出力電圧波形は半導体保護回路が作動しているために歪んでいます。

オーバーロードにならなくても、繰り返し内部半導体保護機能が作動すると、本機 の故障の原因となります。

- 注記・オーバーロードが作動開始するまでの時間は、過負荷の状態により異なります。
   3~11秒の間で作動が開始します。
  - 内部半導体保護機能が作動した場合は、再度 OUTPUT をオンするまでに1分以 上の間隔をおいてください。内部半導体保護機能が作動した原因が取り除かれ れば、内部半導体保護機能は自動的に解除されます。内部半導体保護機能がま だ作動しているうちに OUTPUT をオンするとオーバーロードが解除されないば かりか故障の原因となります。また、同様に内部半導体保護機能が作動してい るうちはアラームクリア操作でもオーバーロードは解除されません。

### オーバーロードの原因確認手順と対処方法

#### ■ 原因確認手順

オーバーロードの原因が電流リミット機能の作動か、内部半導体保護機能の作動か は、次の手順によって確認することができます。

- 出力が オフ になり、OVER LOAD が点灯しているときに SELF TEST (SHIFT, 3) キーを押します。
   電流表示エリアに No.X と表示され、電圧表示エリアに Ad.X と表示されます。
- <u>2.</u> JOG を回すと電流表示エリアと電圧表示エリアの内容が変わりますので、
   Ad.0 になったときのアラーム No. を読み取ります。
   No.3 → 内部の半導体保護機能の作動が原因
   No.6 → 電流リミット機能の作動が原因

#### ■ 対処方法

オーバーロードの原因を取り除いてください。

OUTPUT キー を再度押すと、オーバーロードの表示状態が解除され、出力が オン になります。オーバーロードの原因が取り除かれていない場合には、再びオーバー ロードが発生します。

注記 ・ オーバーロードが発生した場合には、必ずその原因を取り除き、OUTPUT キー を押してください。繰り返しオーバーロード状態になると、故障の原因となり ます。

### 4.6.3 CIRCUIT BREAKER が作動した場合の対処方法

PCR2000LA、PCR4000LA、PCR6000LA では、1 つの OUTPUT コンセントから 10 A(rms) 以上の出力電流を流すと、OUTPUT コンセントの左側にある CIRCUIT BREAKER が遮断することがあります。このとき CIRCUIT BREAKER の前方に赤 いボタンが飛び出します。この場合には、必ず次の手順に従ってください。

- 1. POWER スイッチを オフ にします。
- <u>2.</u> CIRCUIT BREAKER の赤いボタンを押し込みます。
   CIRCUIT BREAKER 1 は OUTPUT コンセント 1 に、CIRCUIT BREAKER 2 は
   OUTPUT コンセント 2 にそれぞれ対応しています。
- 3. 出力電流が 10 A(rms) 以下となるように、負荷を調整します。





# 第5章 各部の名称と機能

この章では、前面パネルと後面パネルのスイッチ、表示、端子などの名称と機能に ついて説明します。

本製品のパネルに表示されている ▲ (アラートマーク) のそれぞれの内容を知るに は、この章をお読みください。

# 5.1 前面

# 5.1.1 コントロールパネル操作部



図 5-1 コントロールパネル

#### [1] OUTPUT

出力の オン、オフ を切り替えます(押すたびに オン、オフ が交互に切り換わりま す)。出力の状態は、コントロールパネル左上の ON/OFF によって表示されます。 POWER オン の直後は OFF になっています。

オン、オフキーはチャタリング対策を十分に行っているためオン、オフを高速に繰 り返すような使用法には応答できない場合があります。

#### [2] ESC

それぞれの機能からホームポジション方向へ階層を上がったり、ENT 待ちの操作を 取り消したりします。

[3] JOG

電圧や周波数などの数値を設定するために使用します。10 クリック/1 回転のロータ リエンコーダです。右に回すと設定値が増加し、左に回すと設定値が減少します。

[4] SHUTTLE

電圧や周波数などの数値を設定するために使用します。 回す角度により4段階にスピードが変わります。右に回すと設定値が増加し、左に 回すと設定値が減少します。 キー操作を確定します。ENT 待ちのときには、ENT が点滅します。

#### [6] SHIFT

各キーの下に書かれている青色文字の機能を有効にします。 SHIFT を押した後、他のキーを押します。SHIFT が押されると、SHIFT が点灯しま す。

#### [7] V

「電圧設定モード」または「電圧リミット値設定モード」にします。 これらのモードになると、電圧表示エリアの周囲に枠が点灯します。

#### V MODE (SHIFT, V)

電圧表示モードを切り替えます。
 電圧表示モードには、設定電圧(SET)、実効値(RMS)、ピーク値(PEAK)、
 平均値(AVE)があります。
 (平均値表示モードは、DC モードのみ)

#### [8] F

「周波数設定モード」または「周波数リミット値設定モード」にします。 これらのモードになると、周波数表示エリアの周囲に枠が点灯します。

#### GP-IB (SHIFT, F)

オプションを使用しているときに、オプションの設定などを変更します。 詳細については、各オプションの取扱説明書を参照してください。

#### [9] |

「電流リミット値設定モード」にします。 このモードになると、電流表示エリアの周囲に枠が点灯します。

#### I MODE (SHIFT, I)

電流表示モードを切り替えます。
 電流表示モードには、実効値(RMS)、ピーク値(PEAK)、電力(W)、平均
 値(AVE)があります。
 (平均値表示モードは、DC モードのみ)

#### [10] 012・・・9(テンキー)および「.」

電圧、電流、周波数の値を直接入力します。(. は小数点) 入力した数値は、ENT キーを押すと確定され、ESC キーを押すと取り消されます。

#### +/- (SHIFT, 0)

DC モードの電圧の極性(+/-)を切り替えます。

#### LIMIT (SHIFT, 1)

電圧・周波数・電流の「リミット値表示モード」にします。

リミット値設定モードでは、電流表示エリアの上の LIMIT が点灯し、電圧表 示エリアと周波数表示エリアの上の HIGH LIMIT または LOW LIMIT が点灯 します。また、これら3つのエリアのどれかの周囲に枠が点灯します。

#### PHASE (SHIFT, 2)

本機単体運転では使用しません。三相運転時に使用します。

#### SELF TEST (SHIFT, 3)

アラームまたはオーバーロードが発生したときにセルフテストモードにします。 セルフテストモードでは、SELF TEST が点灯します。また電流表示エリアに は No.X が、電圧表示エリアには Ad.X が表示されます。X は数字が表示され ます。

#### KEYLOCK (SHIFT, 4)

キーロックモードにします。

キーロックモードでは、KEY LOCK が点灯し、KEYLOCK (SHIFT, 4) キー OUTPUT キー以外は操作できなくなります。

#### SENSING (SHIFT, 5)

センシングモードにします。

センシングモードにする場合には、センシング端子を使用し、電圧を設定した 後、このキーを押します。センシングモードでは電圧の変更はできません。セ ンシングモードでは SENSING が点灯します。

#### RESET (SHIFT, 6)

本機をリセットします。

リセットすると、すべての設定値はイニシャルセットアップ状態(工場出荷状態)に戻ります。

・リセット操作では、SHIFT キーを押した後に ENT キーで確定します。

#### RANGE (SHIFT, 7)

出力電圧レンジを切り替えます。

100 V レンジでは、RANGE の下の 100 V が点灯します。200 V レンジでは、 200 V が点灯します。

・RANGE (SHIFT, 7) キーを押すと、次に切り換わる方が点滅します。ENT キー を押すと、確定します。

#### AC/DC (SHIFT, 8)

ACモード、AC-SモードとDCモードを切り替えます。

ACモードと AC-S モードでは、周波数表示エリアの上の AC が点灯します。 AC-S モードでは S-MODE5 も点灯します。DC モードでは、周波数表示エリ アに dc と表示されます。

各

・AC/DC (SHIFT, 8) キーを押すと、AC または DC 表示の、次に切り換わる方 が点滅します。ENT キー を押すと、確定します。

AC+DC モードのときは AC+DC が点灯します。

·AC+DC モードの詳細については「第9章 RS-232C と GPIB メッセージ解説」、 「10.9 AC+DC モード」または、各オプションの取扱説明書を参照してください。

#### SYNC (SHIFT, 9)

シンクロ動作を行います

シンクロ動作に入ると SYNC が点灯します。

#### DIGIT (SHIFT, .)

電圧設定モードまたは周波数設定モードにおいて、任意の桁以上を変更可能に するデジットモードにします。

デジットモードでは、電圧表示エリアまたは周波数表示エリアの周囲の枠の一 部(カーソル)が点滅し、その桁およびそれより上位(左)の桁が変更可能に なります。

・DIGIT (SHIFT, .) キーを押すたびに、カーソルは左に移動します。

#### [11] CLR

入力された設定値を取り消して、直前の値に戻します。

#### ALM CLR (SHIFT, CLR)

アラーム発生時にアラーム状態を終了します。

#### [12] MEM

メモリから電圧(および周波数)の値を読み出します。

MEM キーを押した後に 0~9のどれかを押してメモリ番地を選ぶと、電流表示エ リアには Ad. X (X =メモリ番地)と表示され、電圧表示エリアおよび周波数表示 エリアには、そのメモリ番地に記憶されている電圧と周波数が読み出されます。 ・ENT キーを押すと、読み出された電圧(および周波数)が設定されます。

#### STORE (SHIFT, MEM)

メモリに電圧(および周波数)の値を書き込みます。

記憶させたい電圧(および周波数)を設定した後、STORE (SHIFT, MEM) キー を押します。その後、1 ~ 9 のどれかを押してメモリ番地を選び ENT キー を 押すと、メモリに書き込まれます。

# 5.1.2 コントロールパネル表示部



#### [1] OUTPUT ON/OFF

出力が オン になっているときは ON が、オフ になっているときは OFF が点灯しま す。POWER オン した時は、出力は OFF になっています。OUTPUT キー を押すた びに出力の オン、オフ が交互に切り換わります。

#### [2] ENT

操作や設定値を確定する前に点滅します。 ENT が点滅している状態を「ENT 待ち」といいます。

[3] SHIFT

SHIFT が押されたときに点灯します。

[4] 電圧表示エリア

電圧値などを表示します。

[5] 周波数表示エリア

周波数値などを表示します。

[6] 電流表示エリア

電流値、電力値などを表示します。電力値表示で 10 kW 以上のときは E3 と表示さ れます。

[7] SET

電圧表示エリアに設定電圧が表示されているときに点灯します。

#### [8] RMS

電圧表示エリアの表示値が実効値のときに点灯します。

#### [9] PEAK

電圧表示エリアの表示値がピーク値のときに点灯します。

#### [10] RMS

電流表示エリアの表示値が実効値のときに点灯します。

#### [11] PEAK

電流表示エリアの表示値がピーク値のときに点灯します。

[12] W

電流表示エリアの表示値が電力値のときに点灯します。

#### [13] HIGH LIMIT

ハイリミット値設定モードのときに点灯します。

#### [14] LOW LIMIT

ローリミット値設定モードのときに点灯します。

#### [15] SELF TEST

セルフテストモードのときに点滅します。

セルフテストモードでは、電流表示エリアには No. と数字が、電圧表示エリアには Ad. と数字が表示されます。

#### [16] KEYLOCK

キーロックモードのときに点灯します。キーロックモードでは、KEYLOCK (SHIFT, 4) キー以外は操作できません。またリモートコントローラを使用して、オプション の機能を実行している場合に点灯します。

#### [17] SENSING

センシングモードのときに点灯します。

センシングモードでは、電圧を変更することはできません。

#### [18] RESET

SHIFT キーを押した後に RESET キーが押されると、ENT と共に点滅します。 この状態で SHIFT キーを押した後に ENT キーを押すと、本機はリセットされ、す べての設定値はイニシャルセットアップ状態(工場出荷状態)に戻されます。

#### [19] RANGE

出力電圧レンジを表示します。100 V レンジのときは RANGE の下の 100 V が点灯 し、200 V レンジのときは 200 V が点灯します。

#### [20] AC + DC

出力電圧モードを表示します。

AC モードと AC-S モードのときは AC が点灯します。DC モードのときは DC が点 灯します。AC+DC モードのときは AC+DC が点灯します。

AC+DC モードの詳細については「第9章 RS-232C と GPIB メッセージ解説」、「10.9 AC+DC モード」または、各オプションの取扱説明書を参照してください。

#### [21] SYNC

シンクロ動作の実行中に点灯します。

シンクロ動作への移行中は点滅します。

#### [22] MEMORY

メモリの書込み / 読出し操作の実行中に点滅します。

#### [23] STORE

メモリにデータを書き込むときに点滅します。

#### [24] LOAD

定格電流値と負荷電流値との比率(定格電流値に対する負荷電流値の割合)の目安 を表示します。

#### [25] OVER LOAD

オーバーロード(過電流)が発生したときに点灯します。

数秒間この状態が続くと、出力がオフになり、アラームが発生しブザーの断続音 がします。

#### [26] ALARM

アラームが発生すると、ブザーの断続音と共に点灯します。

#### [27] S-MODE

下記の状態の時に、該当する番号とともに点灯します。いったん下記機能を使用す ると、そのときの設定内容はバックアップされ、その機能を終了するまで該当する 番号が点灯しつづけます。

1:電源ライン異常シミュレーションまたはシーケンスの実行中

- 2:出力インピーダンスが設定されている
- 3:波形バンクの1~14が選択されている
- 4:出力オン、オフ位相が設定されている
- 5:AC-S モード

#### [28] U-V-W

三相運転および単相3線運転において、電流または電力表示の該当する相を示します。



v~w

S -MODE 1 2 3 4 5

#### [29] U--V--W

三相運転および単相 3 線運転において、相電圧または線間電圧表示の該当相を示し ます。

### [30]RS-232C,GP-IB:TALK,SRQ,LISTEN

RS-232CコントロールおよびGPIBインターフェースを使用したときに点灯します。

# GP-IB ADRS

DLM

RS-232C GP-IB TALK SRQ LISTEN

[31] GP-IB:ADRS,DLIM

GPIB インターフェースにおいて、アドレスおよびレスポンスメッセージターミネー タ(デリミタ)を設定するときに点灯します。

# 5.1.3 前面上部



図 5-3 前面上部

- [1] コントロールパネル
- [2] TO REMOTE CONTROLLER

リモートコントローラ (RC03-PCR-LA または RC04-PCR-LA) のケーブルを差し込みます。

[3] RS-232C

RS-232C ケーブル(9 ピン、クロス)を接続します。

[4] ハンドル

PCR500LA に限り、ハンドルを持って本体を持ち運ぶことができます。PCR1000LA、 PCR2000LA、PCR4000AL、PCR6000LA は、平らな場所で本体を移動するときに使 用します。

 
 ・ PCR1000LA、PCR2000LA、PCR4000LA、PCR6000LA では、絶対にハンドル を使って本体を持ち上げないでください。

# 5.1.4 前面下部









#### 因 5-7 FCH4000LA / FCH000

#### [1] POWER

本機の POWER スイッチです。

PCR500LA、PCR1000LA、PCR2000LA では、スイッチの上側を押すと オン、下側 を押すと オフ になります。

PCR4000LA と PCR6000LA では、レバーを上側に倒すと オン、下側に倒すと オフ になります。

本機は、以下の値を記憶しています。これらの項目については、POWER スイッチ を オン にしたときには、POWER スイッチを オフ にする直前の設定値で立上がり ます。

出力電圧・周波数の設定値
出力電圧レンジ (100 V / 200 V)
出力電圧・周波数・電流のリミット値
出力電圧モード (AC / DC)
電圧・電流・電力の表示モード
キーロック

[2] LINE ランプ

PCR500LA にはありません。

INPUT 端子盤に入力電源が供給されると点灯します。



#### [3] OUTPUT コンセント

出力を前面から取り出す場合に使います。

▲ 注意 ・ 取り出せる最大電流は AC 10 A(rms)、最大電圧は AC 125 V(rms) です。これらの最大値を超えると故障の原因となります。

#### [4] CIRCUIT BREAKER

PCR2000LA、PCR4000LA、PCR6000LA では、1 つの OUTPUT コンセントから 10 A(rms) 以上の出力電流を流すと、OUTPUT コンセントの左側にある CIRCUIT BREAKER が遮断することがあります。このとき CIRCUIT BREAKER の前方に赤 いボタンが飛び出して、回路が遮断されます。この場合には、「4.6 保護機能」を参 照してください。

# 5.1.1 吸気口、キャスタ、その他







PCR-LA



図 5-10 PCR4000LA / PCR6000LA

### [1] 吸気口

内部空冷用の吸気口です。内蔵の吸気フィルタは、定期的に清掃する必要がありま す。

[2] ゴム足 / キャスタ

PCR500LA にはゴム足が付けられています。PCR1000LA、PCR2000LA、PCR4000LA、 PCR6000LA にはキャスタが付けられており、4 輪とも方向を変えることができま す。キャスタにはロック機構があり、一時的に本体を床に固定することができます。

▲ 注意 ・ 本体を固定する場合には、必ず下記のストッパと併用してください。

[3] ストッパ

本体を平らな床面に固定します。 設置時には、必ずストッパをかけてください。

# 5.2 後面

# 5.2.1 後面上部



図 5-11 後面上部スロット

[1] SLOT 1, SLOT 2, SLOT 3, SLOT 4

オプションボードを差し込みます

[2] BNC コネクタ

RS-232C コントロールおよびオプションを使用するときに機能します。詳細は「8.9 力率、VA、ピークホールド電流測定」および「8.15 シーケンス動作」を参照して ください。

# 5.2.2 後面下部









[1] ターミナルボックス

**INPUT** 端子盤、**OUTPUT** 端子盤、**SENSING** 端子盤、**INPUT VOLTAGE SELECTOR** が内蔵されています。

#### [2] INPUT 端子盤

入力電源を接続します。

▲ 警告 · 入力電源ケーブルを接続する場合には、必ず電源プラグを抜くか配電盤からの 給電を遮断してください。

[3] OUTPUT 端子盤

負荷を接続します。

▲ 警告 ・ 出力ケーブルを接続する場合には、必ず入力電源プラグを抜くか配電盤からの 給電を遮断してください。

#### [4] INPUT VOLTAGE SELECTOR

PCR6000LA にはありません。

入力電圧範囲に応じて切り替えます。

ロック式のトグルスイッチになっているため、スイッチを引き上げながら切り替え ます。

[5] SENSING 端子盤

センシング機能を使用するときに、センシングケーブルを接続します。

[6] J1, J2, J3, J4

PCR1000LA にはありません。

本機の機能を拡張するときに使用するコネクタです。通常は使用しません。

# <u>∧</u>警告

5.2.3

排気口

・ 排気口は壁から 20 cm 以上離してください。また 20 cm 以内には物を置かない でください。

下図に PCR500LA と PCR1000LA を示します。PCR2000LA、PCR4000LA、PCR6000LA では排気口の数が異なります。





内部空冷用の排気口です。



能

第 5 章



# 第6章 RS-232CとGPIB

この章では、RS-232C コントロール、GPIB コントロールについて説明します。 GPIB コントロールをするには、オプションの IB03-PCR-LA(GPIB インターフェー ス)が必要になります。

# 6.1 機能説明

PCR-LA シリーズの RS-232C コントロールまたは GPIB コントロール(オプション) では、以下の機能を実現することが可能になります。

#### 電源ライン異常シミュレーション(停電シミュレーション)

停電、電圧降下(ディップ)、電圧上昇(ポップ)のシミュレーションが可能です。 スイッチング電源や電子機器などの試験に利用することができます。「8.14 電 源ライン異常シミュレーション」を参照してください。

#### シーケンス動作

出力電圧や周波数等を時間設定と組み合わせてシーケンス動作をさせると、自動運転を行うことが可能になります。「8.15 シーケンス動作」を参照してください。

#### 高調波電流解析機能

出力電流の高調波解析が可能です。測定方法を簡略化しているため、IEC 規格 等に適合していません。規格適合測定には、HA01F-PCR-L ハーモニクスアナ ライザをご使用ください。

#### 特殊波形出力

サイン波形以外の波形を出力することができます。出力できる波形は、サイン 波形のピークがつぶれた「ピーククリップ波形」が標準で用意されています。 また、波形のデータを本機に転送することにより、「ユーザ定義波形」を出力 することができます。「8.18 特殊波形出力」を参照してください。

#### 出力インピーダンス設定

本機の出力インピーダンス(出力抵抗)はほぼ0Ωです。商用電源は数mΩ から数Ωのインピーダンス(抵抗)を持っています。本機ではオプションを 接続すると、出力インピーダンスを変更することが可能となり、商用電源と同 じ環境をシミュレートすることができます。

GPIB コントロールでは、設定条件を変更しない限り IB03-PCR-LA を外しても 同じ状態で使用することができます。

#### カ率測定、VA 測定、ピークホールド電流計測

「力率測定」、「VA測定」、「ピークホールド電流測定」の3つの測定が可能になります。

ピークホールド電流測定では、ピーククリア信号またはメッセージを本機が受け付けるまでの間、ピーク電流を計測できるため、電源投入時の突入電流の測 定などに便利です。

第

6 章

R S |

232CとG

P I B

#### 出力オン、オフの位相設定

出力の オン、オフ位相の設定がそれぞれ単独で可能です。設定値は本機内で バックアップされます。

GPIB コントロールでは、設定条件を変更しない限り IB03-PCR-LA を外しても 同じ状態で使用することができます。「8.20 出力オン、オフの位相設定」を参 照してください。

#### AC + DC - F

直流に交流を重畳した電圧波形を出力することができます。「8.21 AC+DC モード」を参照してください。

#### メモリ機能の拡張

本機は電圧と周波数の設定値を9組までメモリに記憶し、必要な時に読みだす 機能を持っています(メモリ番号1~9)。RS-232C コントロールまたは GPIB コントロールでは、最大99 組の設定値をメモリに記憶させることができます。 メモリに記憶させた設定値を読み出すには、本機またはリモートコントローラ (RC03-PCR-LA または RC04-PCR-LA)を使用してください。ただし RC03-PCR-LA 使用時または本機からの読み出し可能なメモリ番号は0~9(0 は初期設 定)までです。RS-232C コントロールまたは GPIB コントロールでは、書き込 みしかできません。

# 6.2 他のオプションとの組み合わせ

本機には、さまざまなオプションが用意されています。オプションの詳細は「第 10 章オプション」を参照してください。

RS-232C コントロールおよび GPIB インターフェース(オプション)は、リモート コントローラ(RC03-PCR-LA または RC04-PCR-LA)と同時に使用することはでき ませんのでご注意ください。

# 6.3 RS-232C コントロールの準備

### 6.3.1 必要なハードウェア

RS-232Cコントロールをおこなうには、次のようなハードウェアが必要になります。

- 本機をコントロールするためのコンピュータ (パーソナルコンピュータ、シーケンサなど)
- ・ RS-232C ケーブル (9 ピン、クロスタイプ)

# 6.3.2 RS-232C ケーブルの接続

本機を含めて RS-232C システムを構成するデバイスの POWER スイッチをオフにします。

本機の前面パネルにある RS-232C コネクタに RS-232C ケーブルを接続します。

# 6.3.3 RS-232C 設定

RS-232C コントロールでは、通信パラメータをコンピュータと合わせ、レスポンス メッセージターミネータを設定する必要があります。 工場出荷時の設定は表 6-1 のようになっています。

#### 表 6-1 工場出荷時の設定

| 通信パラメータ          | ボーレート   | 19200 bps |
|------------------|---------|-----------|
|                  | ストップビット | 1ビット      |
|                  | データ長    | 8ビット      |
|                  | パリティ    | なし        |
| レスポンスメッセージターミネータ | CRLF    |           |

\_\_\_\_\_

注記 · 工場出荷時の設定は、従来製品 PCR-L シリーズと一部が異なっています。PCR-L シリーズの環境をそのまま使用する場合は、必ず設定確認を行ってください。

表 6-1 以外の値に設定する場合には、次の手順を実行してください。

### RS-232C コントロール通信パラメータの設定

- <u>1.</u> 本機の POWER スイッチをオンにします。
- <u>2.</u> ESC キーを押してホームポジションにします。
- 3. GP-IB (SHIFT, F) キーを押します。

コントロールパネルの周波数表示エリアに4桁の数字が表示されます。 この数字がRS-232Cの通信パラメータを表しています。 工場出荷時は "0812" に設定されています。




- <u>4.</u> テンキーを使って、4桁の数字で通信パラメータを入力します。
   例えば、ボーレートを19200 bps,ストップビットを1ビット、データ長を7
   ビット、パリティを奇数にそれぞれ設定する場合には、"1712" と入力します。
- <u>5.</u> ENT キーを押して確定し、ESC キーを押します。

設定した通信パラメータは、本機の電源を再投入した後に有効になります。

### RS-232C レスポンスメッセージターミネータ(デリミタ)の設定

レスポンスメッセージの終了を示す終結子をレスポンスメッセージターミネータ と呼びます。

工場出荷時は CRLF です。TERM コマンドメッセージによって変更することができます。

TERM コマンドメッセージについては 9-12 ページの「TERM」を参照してください。

### 6.3.4 RS-232C フロー制御

Xon/Xoff を行うことにより、本機の送受信を制御することができます。これらの制 御コードは、DC(デバイスコントロール)コードで行います。

| DC コード | 機能     | ASCII コード |
|--------|--------|-----------|
| DC1    | 送信要求   | 11h       |
| DC3    | 送信停止要求 | 13h       |

表 6-2 DC(デバイスコントロール)コード

注記 ・ 本機にGPIBインターフェースオプション(IB03-PCR-LA)が挿入されている場合 には、GPIB コントロールが優先となり RS-232C コントロールはできません。 (RS-232C コントロール通信パラメータの設定はできなくなります。) S

-232CとG

Ρ

І В



PCR-LAはDC3受信後、3キャラクタ以内に送信を一時停止します。

PCR-LAからRS-232Cターミナルへの送信制御



# 6.4 GPIB コントロール(オプション)の準備

### 6.4.1 必要なハードウェア

GPIB コントロールを行うには、次のようなハードウェアが必要になります。

- 本機をコントロールするためのコンピュータ
   (パーソナルコンピュータ、ワークステーションなど、GPIB カードを含む)
- ・ GPIB ケーブル

GPIB ケーブルは、当社でも販売しています。お買い上げ元または当社営業所 にお問い合わせください。

GPIB ケーブル 1 m (品番:92080)
GPIB ケーブル 2 m (品番:92070)
GPIB ケーブル 4 m (品番:92090)

IB03-PCR-LA(オプション: GPIB インターフェース)
 詳細は「第10章オプション」「10.1オプションの種類と組み合わせ」を参照してください。

### 6.4.2 GPIB ケーブルの接続

本機を含めて GPIB システムを構成するデバイスの POWER スイッチをオフにします。

本機に取り付けたオプション IB03-PCR-LA (GPIB インターフェース)の GPIB コ ネクタに GPIB ケーブルを接続します。

### 6.4.3 GPIB 設定

GPIB コントロールでは、GPIB アドレスおよびレスポンスメッセージターミネータ を設定する必要があります。

工場出荷時の設定は表 6-3 のようになっています。

#### 表 6-3 工場出荷時の設定

| GPIB アドレス        | 1        |
|------------------|----------|
| レスポンスメッセージターミネータ | CRLF+EOI |

これ以外の値に設定する場合には、次の手順を実行してください。

### GPIB アドレスの設定

- <u>1.</u> 本機の POWER スイッチをオンにします。
- <u>2.</u> ESC キーを押してホームポジションにします。
- <u>3.</u> GP-IB (SHIFT, F) キーを押します。
   コントロールパネルの周波数表示エリアに数字が表示され、その左の "GP-IB ADRS" が点灯します。
   この数字が GPIB アドレスを表しています。
   工場出荷時は "1" に設定されています。
- 4. テンキーを使って、GPIB アドレス(0~30)を入力します。
- <u>5.</u> ENT キーを押して確定し、ESC キーを押します。

設定した GPIB アドレスは、本機の電源を再投入した後に有効になります。

### GPIB レスポンスメッセージターミネータ(デリミタ)の設定

レスポンスメッセージの終了を示す終結子をレスポンスメッセージターミネータ と呼びます。

- <u>1.</u> 本機の POWER スイッチをオンにします。
- <u>2.</u> ESC キーを押してホームポジションにします。
- 3. GP-IB (SHIFT, F) キーを2 回押します。

コントロールパネルの周波数表示エリアに数字が表示され、その左の "GP-IB DLIM" が点灯します。

この数字がレスポンスメッセージターミネータを表しています。

工場出荷時は"0"に設定されています。

表 6-4 表示される数字と終結子の関係

| 数字     | レスポンス<br>メッセージ<br>ターミネータ |           |
|--------|--------------------------|-----------|
| 0      | CRLF+EOI                 | ←工場出荷時の設定 |
| 1      | CR+EOI                   |           |
| 2      | LF+EOI                   |           |
| 3      | EOI                      |           |
| an a i |                          | •         |

CR: Carriage Return LF: Line Feed EOI: End or Identify

- テンキー、ジョグ、シャトルのいずれかにより、レスポンスメッセージターミネータを設定します。
- <u>5.</u> ENT キーを押して確定し、ESC キーを押します。

設定したレスポンスメッセージターミネータは、本機の電源を再投入した後に有効 になります。

TERM コマンドメッセージによって変更することもできます。 TERM コマンドメッセージについては、9-12 ページの「TERM」を参照してください。

# 6.5 PCR-L コマンド互換性の設定

PCR-LA は PCR-L(従来製品)とのコマンド互換性を考慮していますが、GPIB お よび RS-232C のレスポンスメッセージにおいて、一部互換性のないものがありま す。互換性を確保するには次ページの手順にしたがって、PCR-L モードに設定する 必要があります。 <u>2.</u> ESC キーを押してホームポジションにします。

・PCR-LA モード: PCR-LA の標準状態 ・PCR-L モード: PCR-L と互換性のある状態

1.

PCR-L コマンド互換性の設定は2つのモードがあります。

 GP-IB (SHIFT, F) キーを2回押します。GPIBインターフェースオプション (IB03-PCR-LA)を装着している場合は3回押してください。

コントロールパネルの周波数表示エリアに LA または L と表示されます。



LAの表示がPCR-LAモードを表し、Lの表示がPCR-Lモードを表します。

<u>4.</u> テンキーの0か1を押します。
 0が PCR-LA モード、1が PCR-L モードです。

5. ENT キーを押して確定し、ESC キーを押します。

- 注記 · PCR-L コマンド互換性の設定は、工場出荷時には PCR-LA モードとなっていま す。上記の手順で設定した場合は、あらたにその状態が保存されます。
  - · PCR-Lコマンド互換性の設定は、上記以外の方法では変更できません。イニシャ ルセットアップ状態にするために、リセットを実行しても変更できません。

### ■ PCR-LA モードと PCR-L モードの違い

| GPIB および RS-232C<br>コマンド                         | PCR-LA モード           | PCR-L モード                                            |
|--------------------------------------------------|----------------------|------------------------------------------------------|
| 下記 <sup>*1</sup> に対するレスポン<br>スメッセージ              | 0または1を返す             | 000 または 001 を返す                                      |
| ACDC?、TERM? に対す<br>るレスポンスメッセージ                   | 0、1、2、または3を返す        | 000、001、002、または<br>003 を返す                           |
| MEMSTOxx?、FSTOxx?、<br>VSTOxx? に対するレス<br>ポンスメッセージ | xx(メモリ番号)を含め<br>ない   | xx (メモリ番号)を含め<br>る                                   |
| STB? に対するレスポン<br>スメッセージ                          | bit0,1,2,3,4,5,6 を返す | bit0,1,2,3,5,6 を返す。bit4<br>(DSB)は返さない。 <sup>*2</sup> |
| ERR? に対するレスポン<br>スメッセージ                          | bit0,1,2,3を返す。       | bit0,1,7 を返す。 <sup>*3</sup>                          |

\*1. HEAD?、OUT?、RANGE?、SYNC?、FFT?、SIMMODE?、INT?、 RUNNING?、SEQPAUSE?

\*2. 9-67 ページの「ステータスバイトレジスタ」を参照してください。

\*3. 9-69 ページの「エラーレジスタ」を参照してください。

P I B

第 6 章

R

S

# 6.6 メッセージとターミネータ

ここでは、コンピュータ(コントローラ)と PCR-LA(デバイス)間の通信について本書での呼び方とその内容を説明します。図 6-2 を参照してください。



図 6-2 メッセージとターミネータ

### 6.6.1 メッセージ

コントローラから PCR-LA へ送信される命令をプログラムメッセージと呼びます。 また、PCR-LA からコントローラに送信される応答をレスポンスメッセージと呼び ます。

各メッセージは、プログラムヘッダ部とデータ部から構成されます。

### プログラムメッセージ

プログラムメッセージには、さらにコマンドメッセージとクエリメッセージがあり ます。

コマンドメッセージは、PCR-LA の特定の機能を実行したり、設定を変更します。 クエリメッセージは、PCR-LA の設定やステータスを問い合わせます。

### プログラムメッセージの記述方法

・ プログラムヘッダ部とデータ部の間には、スペース(ASCII:20h)が必要です。

・ データが複数ある場合は、", "(ASCII:2Ch)によって連結します。



### アクノリッジメッセージ(RS-232C)

アクノリッジメッセージは、RS-232C コントロールに固有のもので、PCR-LA から コントローラへ送る情報です。プログラムメッセージの処理が完了したことを知ら せます。



アクノリッジメッセージは、ヘッダだけで構成される ASCII コードの文字列で、つぎの2種類があります。

- ・ OK 正常終了
- ・ ERROR シンタックスエラーなどの異常発生

SILENT コマンドメッセージでアクノリッジメッセージを返すかどうか設定できま す。9-10ページの「SILENT」を参照してください。 Ρ

I

В

第

章

### 6.6.2 ターミネータ

プログラムメッセージの終了を示す終結子をプログラムメッセージターミネータ と呼びます。また、レスポンスメッセージの終了を示す終結子をレスポンスメッ セージターミネータと呼びます。

### ・プログラムメッセージターミネータ

つぎのいずれでも使用することができます。あらかじめ設定する必要はありま せん。

### 表 6-5 プログラムメッセージターミネータ

| RS-232C | GPIB     |
|---------|----------|
| CRLF    | CRLF+EOI |
| CR      | CR+EOI   |
| LF      | LF+EOI   |
|         | EOI      |

#### ・レスポンスメッセージターミネータ

詳細は、RS-232C は 9-12 ページの「TERM」、GPIB は 6-8 ページの「GPIB レ スポンスメッセージターミネータ(デリミタ)の設定」を参照してください。

# 6.7 メッセージとレジスタ

PCR-LA がサポートしているプログラムメッセージとレスポンスメッセージを合わ せてデバイスメッセージと呼びます。

PCR-LA がサポートしているデバイスメッセージについては「第 9 章 RS-232C と GPIB メッセージ解説」で説明します。

### 特別な記号と文字

プログラムメッセージやレスポンスメッセージの記述のために本書で使用している特別な記号や文字について表 6-6 のように定義します。

#### 表 6-6 特別な記号と文字の定義

| 記号、文字       | 説明                                                                             |
|-------------|--------------------------------------------------------------------------------|
| < >         | このカッコはプログラムデータを表します。<br>実際のプログラムでは、このカッコは記述しないでください。                           |
| { }         | このカッコに囲まれ、" "で区切られた文字や数字はその中<br>の1つを選ぶことを表します。<br>実際のプログラムでは、このカッコを記述しないでください。 |
| <nr1></nr1> | 整数を表します。<br>「IEEE 規格 488.2 プログラマブル計測器の標準デジタルイン<br>ターフェース」の詳細に説明されています。         |
| <nr2></nr2> | 実数を表します。<br>「IEEE 規格 488.2 プログラマブル計測器の標準デジタルイン<br>ターフェース」の詳細に説明されています。         |
| <nr3></nr3> | 指数を表します。<br>「IEEE 規格 488.2 プログラマブル計測器の標準デジタルイン<br>ターフェース」の詳細に説明されています。         |
| <hex></hex> | 16進数を表します。<br>「IEEE 規格 488.2 プログラマブル計測器の標準デジタルイン<br>ターフェース」の詳細に説明されています。       |



第7章 保守

この章では、保守について説明しています。その他、本機を使用中に動作不良と思 われたときの対処方法についても説明しています。

保 守

# 7.1 保守

### ▲ 警告 ・ 感電の恐れがあります。死亡または傷害を負う可能性があります。保守作業を 行う前に必ず POWER スイッチをオフにして、配電盤のスイッチをオフにして ください。

### 7.1.1 パネル面の清掃

パネル面などが汚れた場合は、水で薄めた中性洗剤をやわらかい布につけて軽く拭 いてください。

▲ 注意
 ・ シンナーやベンジンなどの揮発性のものは、使用しないでください。表面の変
 色、印刷文字の消え、ディスプレイの白濁などを起こすことがあります。

### 7.1.2 吸気フィルタの清掃

前面パネルのルーバの内側に吸気フィルタが実装されています。目詰まりがひどく なる前に、定期的に清掃してください。

- ▲ 注意 ・ フィルタの目詰まりは、装置内部の冷却効果を低下させ、故障や寿命の短縮などの原因となります。
  - <u>1.</u> ルーバの両側にあるラッチ部を押して、ルーバ全体を引いて、ルーバを本体からはずします。



図 7-1 ルーバの取り外しおよび吸気フィルタ

2. ルーバの内側から吸気フィルタを外し、清掃します。

掃除機などを用いて、吸気フィルタに付いているゴミやほこりを取り除きま す。汚れのひどい場合には、水で薄めた中性洗剤で洗って、充分に乾燥させて ください。

- ▲ 注意 ・ 本機の作動中は、冷却のために吸気フィルタを通して空気が吸入されます。吸 気フィルタに水分が含まれていると、本機の内部の温度や湿度が上がり、故障 の原因となります。
  - 3. ルーバに吸気フィルタを取り付けます。
  - ルーバの上下を確認し(ガイドピンがある方が上)、ルーバの両側を持って、 ガイドピンと本体のガイド穴とを合わせます。



図 7-2 ルーバの取り付け

5. 両側のラッチ部を押しこんで、ルーバを本体に取り付けます。

# 7.2 動作不良と原因

ここでは、本機を使用中に動作不良と思われたときの対処方法を示します。 代表的な7つの症状とその症状に対して考えられるチェック項目を示していますの で、該当する項目を探してください。簡単な方法で解決できる場合もあります。 該当する項目がありましたら、その項目の対処方法に従ってください。もし、対処 しても改善されない、または該当する項目がない場合は、当社営業所へお問い合わ せください。

### 症状 1: LINE ランプが点灯しない。

| チェック項目        |        | 推定できる原因                                                                   | 計加の古法                                                      |
|---------------|--------|---------------------------------------------------------------------------|------------------------------------------------------------|
| 場所と対象物の状態     | チェック結果 | 推進できる原凶                                                                   | 刘延初历                                                       |
| INPUT 端子盤に定格電 | いない    | <ul> <li>入力電源ケーブル</li> <li>の誤接続</li> <li>入力電源ケーブル</li> <li>の断線</li> </ul> | 入力電源ケーブルが損傷してい<br>ないか、端子接続は確実かどう<br>か確認してください。             |
| 圧が印加 されているか   | いる     | ・故障                                                                       | 直ちに配電盤スイッチをオフに<br>してください。本機の使用をす<br>ぐに中止して修理を依頼してく<br>ださい。 |

### 症状 2: POWER スイッチをオンにしても、コントロールパネル表示 部が点灯しない。

| チェック項目                       |        | 堆空できる原田                                                                   | 計加の主法                                                                                                                         |
|------------------------------|--------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 場所と対象物の状態                    | チェック結果 | 推進できる原因                                                                   | 刘 处心 7 7 7 7 7                                                                                                                |
| INPUT 端子盤に定格電<br>圧が印加 されているか | いない    | <ul> <li>入力電源ケーブル</li> <li>の誤接続</li> <li>入力電源ケーブル</li> <li>の断線</li> </ul> | 入力電源ケーブルが損傷してい<br>ないか、端子接続は確実かどう<br>か確認してください。                                                                                |
|                              | いる     | 本体後面下部のコ<br>ネクタ J4 に専用コ<br>ネクタ (特定端子<br>間を短絡するもの)<br>が挿入されていな<br>い        | PCR2000LA、PCR4000LA、<br>PCR6000LA では、本体後面下<br>部のコネクタ J4 に専用コネク<br>タ(特定端子間を短絡するも<br>の)を挿入してください。専用<br>コネクタは本体に取り付けて出<br>荷されます。 |
|                              |        | ・故障                                                                       | 直ちに配電盤スイッチをオフに<br>してください。本機の使用をす<br>ぐに中止して修理を依頼してく<br>ださい。                                                                    |

# 症状 3: コントロールパネルの操作ができない。一部の操作ができない。

| チェック項目                                                                 |        | 世中できる原田                    | 社師の士社                                              |
|------------------------------------------------------------------------|--------|----------------------------|----------------------------------------------------|
| 場所と対象物の状態                                                              | チェック結果 | 推進できる原因                    | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              |
| キーロックモードに                                                              | いる     | ・キーロック作動中                  | キーロックの解除<br>参照:「3.1.3 キーロック機能」                     |
| なっているか                                                                 | いない    | ・<br>故障                    | 本機の使用をすぐに中止して修<br>理を依頼してください。                      |
| 入力電圧が定格範囲内                                                             | である    | ・故障                        | 本機の使用をすぐに中止して修<br>理を依頼してください。                      |
|                                                                        | でない    | ・入力電圧の異常                   | 入力電圧を確認してください。                                     |
| ALARM が点灯してい<br>るか                                                     | いる     | 本機の内部または<br>外部で異常が発生<br>した | アラームの種類を確認してくだ<br>さい。<br>参照:「4.6.1 アラーム発生時の<br>操作」 |
| 周辺に強いノイズを発<br>生する機器があるか                                                | ある     | ・ノイズによる誤作<br>動             | ノイズ源から遠ざけてくださ<br>い。                                |
| RS-232C コントロール<br>または、GPIB(IB03-<br>PCR-LA) コントロール<br>による制御を行ってい<br>るか | いる     | ・外部から制御され<br>ている           | 正常                                                 |
| 電圧リミット値、周波<br>数リミット値は、設定<br>可能範囲内にあるか                                  | ない     | ・リミット値の設定<br>が不適切          | リミット値を正しく設定してく<br>ださい。<br>参照:「4.2 リミット値の設定」        |

### 症状 4: ALARM が点灯する。

| チェック項目                  |        | 堆守できる原因                                                   | 計師の古法                                                                                  |
|-------------------------|--------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|
| 場所と対象物の状態               | チェック結果 | 推進できる原因                                                   | 刘延切力法                                                                                  |
| ファンが停止している<br>か         | いる     | ・ファンの故障によ<br>り、過熱保護(ア<br>ラーム 2)が作動                        | 本機の使用をすぐに中止して修<br>理を依頼してください。                                                          |
| 排気口または吸気口が<br>ふさがれているか  | いる     | <ul> <li>・過熱保護(アラーム2)が作動</li> <li>・吸気フィルタの目詰まり</li> </ul> | 排気口は壁から 20 cm 以上離し<br>てください。また 20 cm 以内に<br>は物を置かないでください。<br>吸気フィルタの目詰まりを清掃<br>してください。 |
| 周囲温度が 50 ℃以上<br>になっているか | いる     | ・過熱保護(アラー<br>ム2)が作動                                       | 周囲温度は 50 ℃以下の環境で<br>使用してください。高温で発熱<br>する負荷は遠ざけてください。                                   |

症状 5: コントロールパネルの表示が正常でない。

| チェック項目                               |        | 推定できる原田                      | 計加の支注                                                                                          |
|--------------------------------------|--------|------------------------------|------------------------------------------------------------------------------------------------|
| 場所と対象物の状態                            | チェック結果 | 推進できる原因                      | 対処の方法                                                                                          |
| 入力電圧が定格範囲内<br>か                      | でない    | ・入力電圧の異常                     | 入力電圧を確認してください。                                                                                 |
| 周辺に強いノイズを発<br>生する機器があるか              | ある     | ・ノイズによる誤作<br>動               | ノイズ源から遠ざけてください。                                                                                |
| S-MODE が点灯してい<br>るか(S-MODE5 を除<br>く) | いる     | ・オプション使用時<br>の設定が保持されて<br>いる | キーロックを解除してからリ<br>セットしてください。イニシャ<br>ルセットアップ状態になります。<br>参照:「2.7 動作確認」、リセット<br>手順:「3.1.3 キーロック機能」 |

### 症状 6: 出力電圧波形がひずむ。

| チェック項目                 |        | 堆守できる原因                    | 計加の支注                         |
|------------------------|--------|----------------------------|-------------------------------|
| 場所と対象物の状態              | チェック結果 | 推進できる原因                    | 入还V/77石                       |
| OVER LOAD が点灯し<br>ているか | いる     | ・内部過負荷保護<br>(アラーム3)が作<br>動 | 過負荷の可能性があります。負<br>荷を点検してください。 |
|                        | いない    | ・故障                        | 本機の使用をすぐに中止して修<br>理を依頼してください。 |

### 症状 7: 出力電流をとることができない(OVER LOAD 点灯)。

| チェック項目                  |        | 歴史できる原田                                                                                               | 計加の古法                                         |  |
|-------------------------|--------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| 場所と対象物の状態               | チェック結果 | 推進できる原因                                                                                               |                                               |  |
| 出力電圧レンジが正し<br>く設定されているか | いない    | ・200 V レンジに<br>なっている                                                                                  | 出力電圧レンジを正しく設定し<br>てください。                      |  |
| 負荷が低力率であるか              | である    | <ul> <li>・内部回路保護が作動</li> <li>・コンデンサイン</li> <li>プット型整流負荷、</li> <li>非線形負荷等が接続</li> <li>されている</li> </ul> | 負荷力率の改善を行ってくださ<br>い。<br>参照:「8.4 出力と負荷について」    |  |
| 電流リミット値が正し<br>く設定されているか | いない    | ・電流リミット値の<br>設定が不適切                                                                                   | 電流リミット値を正しく設定し<br>てください。<br>参照:「4.2 リミット値の設定」 |  |
| DC モードになっている<br>か       | いる     | ・DC モードでは定<br>格出力電流が、AC<br>モードの半分になる                                                                  | 過負荷の可能性があります。負<br>荷を点検してください。                 |  |



# 第8章 参照・解説

この章は、機能や性能についての技術的な説明をまとめたものです。

# 8.1 従来製品 PCR-L シリーズとの関係

PCR-LA シリーズと従来製品 PCR-L シリーズとの組み合わせは、オプションを含め て原則としてできません。

オプションについては「第10章オプション」を参照してください。

# 8.2 入力電源ケーブルの要件

入力電源ケーブルは付属品をご使用ください。製品の容量に応じたケーブルを付属 しています。配電盤までの距離が長い場合は、お客様に準備していただくことにな ります。その場合は下表の電線径(導体公称断面積)以上のケーブルをご使用くだ さい。

| 公称断面積<br>[mm <sup>2</sup> ] | AWG | (参考断面積)<br>[mm <sup>2</sup> ] | 許容電流 (*)<br>[A]<br>(Ta = 30 ℃) | 当社推奨電流<br>[A] |
|-----------------------------|-----|-------------------------------|--------------------------------|---------------|
| 0.9                         | 18  | (0.82)                        | 17                             | -             |
| 1.25                        | 16  | (1.31)                        | 19                             | -             |
| 2                           | 14  | (2.08)                        | 27                             | 10            |
| 3.5                         | 12  | (3.31)                        | 37                             | -             |
| 5.5                         | 10  | (5.26)                        | 49                             | 20            |
| 8                           | 8   | (8.37)                        | 61                             | 30            |
| 14                          | 5   | (13.3)                        | 88                             | 50            |
| 22                          | 3   | (21.15)                       | 115                            | 80            |
| 30                          | 2   | (33.62)                       | 139                            | -             |
| 38                          | 1   | (42.41)                       | 162                            | 100           |

\* 電気設備技術基準 第 172条(省令第 57 条)「低圧屋内配線の許容電流」より

上表の値は、単芯ケーブルの一例です。電線の被覆(絶縁物)材質(許容温度)または多芯ケーブルなどの条件により異なります。上表以外のケーブルの場合には、 内線規定に従ってください。

接地用ケーブルには、L および N 用ケーブルと同じかそれ以上の径の電線を使用し てください。接地ケーブルが細いと、異常時の事故防止に役立たないことがあり危 険です。

入力電源(電源コンセント、配電盤など)の電流容量を確認してください。電流容量が不足していると、入力電源の異常過熱やブレーカなどの遮断が起こることがあります。

#### 出力オフ状態のインピーダンス 8.3

本機では、機械的なスイッチやリレーによって内部回路と出力を切り離すのではな く、電気的に出力のインピーダンスを上げることによって出力をオフにします。し たがって、チャタリングのないオン、オフをすることができます。出力がオフの ときには、出力はハイインピーダンス状態になります。また、本機の出力電圧はほ ぼ0Vとなります。

### 出力が オフ のときにはハイインピーダンス状態

このときのインピーダンス(抵抗 R<sub>OFF</sub>)値は、ほぼ下記のようになります。

・出力 100 V レンジの時

 $R_{OFF} = \hbar 8 \div N [k\Omega]$ 

・出力 200 V レンジの時

 $R_{OFF} = 約 32 ÷ N [k\Omega]$ 

- Nは PCR-LA シリーズの定格出力容量 [kVA] に相当する数値を示します。
- 例:PCR2000LA の出力 200 V レンジにおけるインピーダンス

 $R_{OFF}$  =約 32÷2 [k $\Omega$ ] =約 16 [k $\Omega$ ]

出力がオフでも上記のようなインピーダンスがあるため、負荷がバッテリ等の

注記 場合、わずかに本機に電流が流れ込み放電することがあります。

参

# 8.4 出力と負荷について

### AC モードと AC-S モードの定格出力電流

### ■線形負荷の場合

本機より取り出せる交流定格出力電流は、図 8-1 ~図 8-3 のグラフが示すように、 本機の出力電圧、負荷力率および出力周波数の条件によって制限されます。



・出力電流率とは、最大 定格電流を100%とした 時の百分率を示します。

・出力電圧率とは、出力 100 V/200 V レンジにお いて、出力電圧 100 V/200 Vを 100 % とした時の百 分率を示します。





図 8-2 負荷力率対定格出力電流



図 8-3 出力周波数対定格出力電流

### ■ PCR1000LA における定格出力電流の求め方

- 例1:出力電圧 115 V (100 V レンジ)、負荷力率 0.7、出力周波数 25 Hz 図 8-1 ~ 図 8-3 のグラフより
  - ・出力電圧 115 V(115%)における出力電流率は 87 %-------(a)
  - ・負荷力率 0.7 における出力電流率は 87.5 % ------(b)
  - ・出力周波数 25 Hz における出力電流率は 78 % -------(c)

(a) と (b) の条件より、出力電圧 115 V,負荷力率 0.7 における出力電流率は、 (a) × (b) = 76.1 [%]

となります。

この値と (c) を比較すると、この値の方が (c) よりも低いため、(a) × (b) の値によっ て制限されます。したがって、最大出力電流率は (a) × (b) の 76.1% となります。 PCR1000LA の場合、出力 100 V レンジにおける出力電流率 100% 時の出力電流は 10 A のため、上記条件における定格出力電流は、

 $10 \times 0.761 = 7.61$  [A]

となります。

### 例 2 : 出力電圧 240 V (200 V レンジ)、負荷力率 0.65、出力周波数 15 Hz

図 8-1~図 8-3 のグラフより

- ・出力電圧 240 V(120%)における出力電流率は 83 %----(a)
- ・負荷力率 0.65 における出力電流率は 81 % ------(b)
- ・出力周波数 15 Hz における出力電流率は 64 % -------(c)

(a) と (b) の条件より、出力電圧 240 V, 負荷力率 0.65 における出力電流率は、 (a) × (b) = 67.2 [%]

となります。

この値と (c) を比較すると、(c) の方がこの値よりも低いため、(c) の値によって制限 されます。したがって、最大出力電流率は (c) の 64 % となります。

PCR1000LA の場合、出力 200 V レンジにおける出力電流率 100 % 時の出力電流は 5 A のため、上記条件における定格出力電流は、

 $5 \times 0.64 = 3.2$  [A]

となります。

例1,2ともに、コントロールパネルのLOADレベルメータは、制限された出力電 流値をフルスケールとして表示します。

以上のような定格出力電流の条件を超えて使用すると、本機の保護機能が作動し、 出力電圧が垂下したり出力がオフになったりすることがあります。 第

### ■ コンデンサインプット型整流負荷の場合

コンデンサインプット型整流回路を入力に持つ電子機器などの場合、出力電流としては、出力電圧のピーク付近で出力電流実効値の数倍のピーク電流が流れます。



図8-4 コンデンサインプット型整流回路の波形

この場合最大出力ピーク電流は最大定格電流(定格出力容量 [VA]/100 [V](100 V レンジ)または、定格出力容量 [VA]/200 [V](200 V レンジ))の4倍までとしてください。

出力電流の実効値は、前項の「線形負荷の場合」で負荷力率1として算出される定 格出力電流値までとしてください。

上記の定格出力電流(ピークまたは実効値)を超えて使用すると、本機の保護機能 が作動し出力電圧波形が歪んだり出力がオフになることがあります。

なお、上記の最大ピーク電流を歪なく供給できる条件は、出力電圧(設定値)が一 定の場合です。出力電圧設定値を急変(上昇)させた場合等は、電圧・電流波形に 歪を生じる場合があります。オプションを使用して電源ライン異常シミレーション やシーケンス動作を行っている場合でも、出力電圧が変化する際には同様に歪を生 じる可能性があります。出力電圧設定値が一定で OUTPUT をオンにした場合には、 歪なく最大ピーク電流を供給することができます。

### ■突入電流が流れる負荷の場合

下記のような負荷の場合、負荷への電圧印加時、または電圧急変時に出力周波数の 数サイクル〜数10サイクルの間、突入電流(定常時の数倍〜数10倍以上)が流れ ようとします。

#### トランス、スライドトランス(スライダック)負荷

トランス、スライドトランス負荷に電圧を印加した場合、電圧印加のタイミン グまたは残留磁気の状態により、数サイクルの間、最大で定常電流の数 10 ~ 数 100 倍の突入電流が流れようとします。

#### モータ、ランプ負荷

モータ、ランプ負荷に電圧を印加した場合、数 10 ~数 100 サイクルの間、数 倍~数 10 倍の突入電流が流れようとします。

#### コンデンサインプット型整流負荷

コンデンサインプット型整流回路を入力に持つ電子機器では、突入電流に対す る保護(制限)回路を持っていない場合には、数サイクルの間、数 10~数 100 倍の突入電流が流れようとします。

本機の最大出力ピーク電流は、コンデンサインプット型整流負荷において、最大出 力実効値電流の4倍まで供給できます。その他の負荷では、約5秒間瞬時ピーク電 流を供給できます(電流波形、出力電圧、出力周波数などにより異なります)。具 体例として、出力電圧100V、出力周波数50 Hz における供給可能な瞬時ピーク電 流値を下表に示します。

| 負荷力率 | 瞬時ピーク電流率*[%] |
|------|--------------|
| 1.0  | 200          |
| 0.9  | 160          |
| 0.8  | 150          |
| 0.6  | 140          |
| 0.4  | 120          |
| 0.2  | 110          |
|      |              |

\* PCR-LA シリーズの最大出力電流を 100 % とした時の出力電流率

上記のピーク電流を超える突入電流が流れた場合、本機の保護回路が作動し出力電 圧波形が歪んだり出力がオフになったりすることがあります。

### ■ サージが発生する負荷の場合

負荷への電圧印加時または電圧急変時にサージを発生する負荷(蛍光灯など)の場 合、サージ発生時に本機の誤動作が起きることがあります。このような場合には、 出力ケーブルにノイズフィルタなどを接続してください。

### ■ 特殊な負荷の場合

OUTPUT 端子盤または OUTPUT コンセントに直接コンデンサを接続すると、出力 波形に異常が発生することがあります。このような場合には、コンデンサを出力配 線の負荷側へ接続してください。

#### ■ 飽和磁束密度の小さい負荷の場合

本機は電源シミュレーション等の機能を実現するために、内部に直流アンプを使用 しています。そのため AC モードでは、AC 出力に直流オフセット電圧(100 mV 程 度)が重畳することがありますので、飽和磁束密度の小さいトランス等を接続する と予想外の電流が流れることがあります。この場合には AC-S モードを使用してく ださい。 照

解説

### DCモード



本機より取り出せる直流定格出力電流は、図 8-5 のグラフが示すように、本機の出力電圧によって制限されます。

図 8-5 出力電圧率対定格出力電流:DC モード

直流定格出力電流を超えて使用すると本機の保護機能が作動し、出力電圧が垂下したり出力がオフになったりすることがあります。

ここでの出力電流率とは、DCモードにおける最大定格電流を100%とした時の百分率を示します。

ここでの出力電圧率とは、出力 100 V/200 V レンジにおいて、DC 出力電圧 100 V/200 V を 100 % とした時の百分率を示します。

解 説

第

# 8.5 過負荷保護機能

本機には2種類の過負荷保護機能があります。1つは電流リミット機能、もう1つ は内部半導体保護機能です。

### 電流リミット機能

本機の出力電流値が電流リミット値(最大設定:定格出力電流の1.1倍)を超えた ときにかかる電流リミット機能です。電流リミット値を超える電流が負荷に流れた 場合には、OVER LOAD が点灯し、出力電圧は垂下します。その状態が約10秒間 (AC モード、AC-S モード時)または約1秒間(DC モード時)続くと、自動的に出 力はオフになります。

### 内部半導体保護機能

本機内部の半導体保護機能です。本機の使用方法がその仕様に適合していれば、内 部の半導体保護機能は作動することはありません。しかし突入電流などの一時的な 過電流が発生した場合には、内部の半導体保護機能が作動し、その状態が数秒間続 くとオーバーロードになります。

内部半導体保護機能の作動後数秒間はオーバーロードになりません。しかしこの間 では、出力電圧波形は半導体保護回路が作動しているために歪んでいます。

オーバーロードにならなくても、繰り返し内部半導体保護機能が作動すると、本機 の故障の原因となります。

### ■ オーバーロード状態の原因と対処方法

内部の半導体保護機能が作動した場合、下記の対処方法を実施してください。運転 の再開は1分以上経過してから行ってください。

内部半導体保護機能が作動した原因が取り除かれれば、内部半導体保護機能は自動 的に解除されます。内部半導体保護機能がまだ作動しているうちに OUTPUT をオ ンするとオーバーロードが解除されないばかりか故障の原因となります。また、同 様に内部半導体保護機能が作動しているうちはアラームクリア操作でもオーバー ロードは解除されません。

#### 線形負荷の場合

| オーバーロード状態      |                                                                                                                                                                                 | 対処                                                                                                                                |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| 徐々に出力<br>電流を増加 | <ul> <li>・図 8-6 (a) のように電<br/>圧が垂下した場合には、</li> <li>電流リミット機能が作<br/>動。</li> <li>・図 8-6 (b-1)、(b-2)</li> <li>のように出力電圧波形<br/>が歪んだ場合には、内</li> <li>部の半導体保護機能が</li> <li>作動。</li> </ul> | <ul> <li>・電流リミット値が低く設定されている場合には、その設定値を変える。</li> <li>・定格電流を超えている場合には負荷を低減する。</li> <li>・力率が低い場合には(遅れ位相)、進相コンデンサ等で力率を上げる。</li> </ul> |  |  |
| 出力電流を<br>急激に増加 | <ul> <li>·図 8-6 (b-1)、(b-2)</li> <li>および図 8-6 (c)のように出力電圧波形が歪んだ場合には、内部の</li> <li>半導体保護機能が作動。</li> </ul>                                                                         | ・力率が低い場合には(進み位相)、負<br>荷にダミー抵抗を並列に付けて力率を<br>上げる。                                                                                   |  |  |

### コンデンサインプット型整流負荷の場合

| オーバーロード状態 |                                                                                                                                        | 対処                                                                                   |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| 出力電流を     | <ul> <li>・図 8-6 (a) のように</li> <li>電圧が垂下した場合に</li> <li>は、出力電流(実効値)</li> <li>が電流リミット値を超</li> <li>えています。電流リ</li> <li>ミット機能が作動。</li> </ul> | <ul> <li>・電流リミット値が設定されている場合には、その設定値を変える。</li> <li>・定格電流を超えている場合には負荷を低減する。</li> </ul> |  |  |
| 21 201    | <ul> <li>・図 8-6 (c) のように</li> <li>電圧 波形が歪んだ場合</li> <li>には、出力ピーク電流</li> <li>による内部の半導体保</li> <li>護機能が作動。</li> </ul>                      | ・ピーク電流を低減する。                                                                         |  |  |

### 突入電流が流れる負荷の場合

| オーバーロード状態                     |                                                                                                               | 対処          |
|-------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|
| 負荷への電<br>圧印加時ま<br>たは電圧急<br>変時 | <ul> <li>・図 8-6 (c) のように</li> <li>電圧波形が歪んだ場合</li> <li>には、突入電流による</li> <li>内部の半導体保護機能</li> <li>が作動。</li> </ul> | ・突入電流を低減する。 |



電圧波形







図 8-6 オーバーロード状態 (a)、(b-1)、(b-2)、(c)

# 8.6 AC モードと AC-S モードの違い

本機は、直流出力や電源ライン異常シミュレーション等の機能を実現するために、 内部に直流 (DC) アンプを使用しています。

AC モードでは、内部で生成した交流信号 (AC REF)を直流アンプに直接入力してい ます。このため、この AC REF 信号を忠実に電力増幅して出力することができます が、同時に AC REF 信号に含まれる直流電圧成分も増幅して出力されます。(交流 出力電圧に直流オフセット電圧が重畳されます。)

この直流オフセット電圧は数 100 mV(交流出力電圧値の 1/1000) 程度であるため、 一般的な負荷では問題となることはありませんが、飽和磁束密度の小さいトランス / スライドトランス等では予想外の励磁(偏磁)電流が流れることがあります。

一方 AC-S モードでは、AC REF 信号と直流アンプの間を交流結合としています。

このため、直流オフセット電圧は数 10 mV 以下となりトランスやスライドトランスの偏磁現象は抑えられます。

ただし、アンプの入力が交流結合されているため低周波数域では出力電圧が若干低下します。40 Hz ~ 999.9 Hz において、200 Hz を基準として±1%以内の周波数特性となります。

また、オプションを使用して電源ライン異常シミュレーションや特殊波形出力を行 う場合、性能に限定条件がありますので注意してください。詳細はオプションの取 扱説明書を参照してください。

# 8.7 電圧表示モードと測定方式

### ■2 つの電圧表示モード

設定電圧表示:現在設定されている電圧値を表示します。 測定電圧表示:3種類の測定方法により、現在の出力電圧値を表示します。

### ■3 つのサンプリング方式

出力電圧測定は出力電圧をサンプリングし、サンプリングによって得た256 ポイン トのデータから値を求めます。サンプリング方法は設定周波数によって以下の3種 類に分かれます。

1. 設定周波数が1Hz以上16Hz 未満の場合

波形1周期で256ポイントを実時間サンプリングします。波形1周期で測定データ が得られますので、測定サイクルは1周期になります。 波形 1 周期で 16 ポイントをサンプリングします。そしてこれを 16 回繰り返し、256 ポイントのデータを得ます。波形が 16 周期繰り返すまで測定データが得られませ んので、測定サイクルは 16 周期になります。

#### 3. 設定周波数が 256 Hz 以上 1 kHz 未満の場合

波形1周期で1ポイントをサンプリングします。そしてこれを256回繰り返し、256 ポイントのデータを得ます。波形が256周期連続するまで測定データが得られませんので、測定サイクルは256周期になります。

#### ■3つの測定方法

出力電圧の測定方法には「実効値測定」、「ピーク値測定」、「平均値測定」の3種類 があり、あらかじめ希望する測定方法を設定して電圧を測定します。それぞれの測 定方法の特徴は次の通りです。

#### 1. 実効値測定(RMS)

波形をサンプリングして得た 256 ポイントのデータから計算により実効値を求めま す。

・ACモードとDCモードの両方で使用可能です。

#### 2. ピーク値測定(PEAK)

波形をサンプリングして得た 256 ポイントのデータから絶対値の最大値を求めま す。

- ・ピーク電圧表示は、符号なしの絶対値表示になります。
- ・ピーク値は、1測定サイクル毎にリセットされます。

波形をサンプリングしているため、サンプリングポイント間で発生したピーク は測定できません。

・ACモードとDCモードの両方で使用可能です。

#### 3. 平均值測定(AVE)

波形をサンプリングして得た 256 ポイントのデータから計算により平均値を求めま す。

・DC モードでのみ使用可能です。

参照

# 8.8 電流・電力表示モードと測定方式

出力電流測定は出力電流をサンプリングし、サンプリングによって得た256 ポイン トのデータから値を求めます。サンプリング方法は出力電圧測定と同じです。 出力電流の測定方法には「実効値測定」、「ピーク値測定」、「平均値測定」のほかに 「電力測定」があり、あらかじめ希望する測定方法を設定して電流・電力を測定し ます。それぞれの測定方法の特徴は次の通りです。

#### 電流実効値測定(RMS)

波形をサンプリングして得た256ポイントのデータから計算により実効値を求めま す。

・ACモードとDCモードの両方で使用可能です。

#### 電流ピーク値測定(PEAK)

アナログピークホールド回路で電流のピーク値を連続捕捉して計測します。

- ・ピーク電流表示は、符号なしの絶対値表示になります。
- ・ピーク値は、1測定サイクル毎にリセットされます。
- ・ACモードとDCモードの両方で使用可能です。

#### 電流平均值測定(AVE)

波形をサンプリングして得た256ポイントのデータから計算により平均値を求めま す。

・DC モードでのみ使用可能です。

#### 電力測定(W)

電圧・電流波形をサンプリングして得た256 ポイントのデータから計算により電力 を求めます。

・ACモードとDCモードの両方で使用可能です。

### 8.9 力率、VA、ピークホールド電流測定

**RS-232C** コントロールを使用すると、ピークホールド電流表示が可能になります。 ピーク値測定とピークホールド値測定の違いを以下に示します。

#### ■ピーク値測定

ピーク値測定とは、1 測定サイクル毎にクリアされる方式です。 本機のピーク値測定は、アナログピークホールド回路で電流のピーク値を測定し て、そのデータの絶対値の最大値を求めています。したがって、ピーク電流表示は 正負の符号のない絶対値表示になります。ピーク値は、AC/AC-S/DC/AC+DC の各 モードで測定可能です。

#### ■ ピークホールド値測定

ピークホールド値測定とは、最大ピーク値をピーククリア信号が入力されるまで保 持する方式です。ピークホールド電流測定を行うと、電源投入時の突入電流測定な どに便利です。

本機のピークホールド値測定は、アナログピークホールド回路で電流のピーク値を 測定して、そのデータの絶対値の最大値を求めています。したがって、ピーク電流 表示は正負の符号のない絶対値表示になります。ピークホールド値は、AC/AC-S/ DC/AC+DC の各モードで測定可能です。

アナログピークホールド回路の応答は、約50 μs以上継続するピークを捕捉することができます。これより継続時間の短いピークに対しては、正しい捕捉ができません。

ピーク電流は PCR-LA の電流供給能力に大きく依存します。PCR-LA の出力容量は 負荷に対して十分な余裕をみてください。

#### ピーククリアの方法:RS-232C コントロール

RS-232C コントロールを介してピーククリアメッセージを送ります。

#### ピーククリアの方法:ピークイニシャル 信号

本機後部の PEAK INIT IN 端子 (BNC コネクタ)の入力をショートします。ショートする時間は、出力電流の測定サイクルで2サイクル分(約1~2秒)以上必要です。PEAK INIT IN 端子解放の状態では約5Vの電圧が印加されています。またショートする回路のインピーダンス(抵抗)は500以下としてください。

BNC コネクタは PCR-LA の INPUT 端子盤、OUTPUT 端子盤とは絶縁されてい ます。ただし、PEAK INIT IN、SEQ TRG OUT、SEQ STAT OUT の各信号のコ モンラインは本機内部で共有されているので、絶縁されていません。また、 SLOT の内部回路とも絶縁されていません。

### 8.10 LOAD レベルメータ動作例

負荷に流れる電流を検出して、定格電流値に対する負荷電流値の割合を(目安として)表示します。

負荷に流れる電流は負荷によってさまざまに変化します。AC モードおよび AC-S モードでは出力電圧・周波数・負荷力率により、DC モードでは出力電圧により、 出力電流のディレーティング(低減)があり、定格電流値は負荷の状態によって変 化します。このため、定格電流値と負荷電流値との比率を正確に知ることは困難で す。以下に、PCR1000LA の LOAD レベルメータの表示例を示します。

#### 出力電圧の設定による定格出力電流のディレーティングを表示する場合

例:出力電圧 100 V のとき (100 V レンジ)

→ 定格電流値 10 A をフルスケールとして表示します。

出力電圧 150 V のとき (100 V レンジ)

→ 定格電流値 6.67 A をフルスケールとして表示します。

照

解

説

第

出力電圧レンジによる定格出力電流の変化を表示する場合

例:100 V レンジのとき

→ 定格電流値 10 A をフルスケールとして表示します。

200 V レンジのとき

→ 定格電流値5Aをフルスケールとして表示します。

出力周波数による定格出力電流のディレーティングを表示する場合

例:50 Hz のとき

→ 定格電流値 10 A をフルスケールとして表示します。

5 Hz のとき

→ 定格電流値5Aをフルスケールとして表示します。

### 出力電圧モード(AC/DC)による定格電流の変化を表示する場合

例:AC モードのとき

→ 定格電流値 10 A をフルスケールとして表示します。

DC モードのとき

→ 定格電流値5Aをフルスケールとして表示します。

**電流リミット値の設定値を定格出力電流として表示する場合** 例:電流リミット値 5 A のとき

→ 定格電流値5Aをフルスケールとして表示します。

本機の内部半導体保護回路が作動する値を定格として表示する場合

例:力率が 0.4 の負荷のとき

→ 定格電流値約5Aをフルスケールとして表示します。

## 8.11 センシング機能の方式

センシング機能は、遠い場所に負荷をつないで、その場所(センシングポイント) の電圧を安定化させたい場合に使用します。しかし通常の直流電源の「リモートセ ンシング(リアルタイムで瞬時に電圧を補正する機能)」とは、大きな違いがあり ます。交流と直流の両方を出力することができますが、交流電源が基本になってい ます。交流電源は出力に交流電圧がでるため、出力端に大容量のコンデンサを接続 することはできません。そのために通常の直流電源と同じようにリモートセンシン グを行うと、電源の動作が不安定になることがあります。

本機では、センシングポイントの電圧を測定機能により測定して、電圧の不足分を 自動的に補正するものです。この方式では電圧の安定度、負荷電流の急変による出 力電圧の応答性、波形の質(歪率)などにおいて、通常使用より性能が低下します。 AC モード、AC-S モードおよび DC モードで使用できます。DC モードのセンシン グ機能においても、直流電源のリモートセンシングより性能が低下します。

# 8.12 メモリ機能の応用

電圧と周波数の設定値をあらかじめメモリに記憶させておいて、いつでも読み出し て使用することができます。頻繁に用いる電圧と周波数の値は、この機能を用いて メモリに書き込んでおくと便利です。

メモリ機能は電圧と周波数の値を1組として、メモリに書き込んだり、読み出して 使用することができる機能です。DC モードでは、電圧だけの読み書きを行うこと ができます。メモリは9組を設定できます。設定(書き込み)が可能なメモリ番地 は1~9です。

イニシャルセットアップ状態でのメモリの設定内容を下表に示します。

|       | AC モー<br>AC-S モー  | DC で有効 |          |
|-------|-------------------|--------|----------|
| メモリ番地 | 交流電圧 (V) 周波数 (Hz) |        | 直流電圧 (V) |
| 0     | 0.0               | 50     | 0.0      |
| 1     | 0.0               | 50     | 0.0      |
| 2     | 0.0               | 50     | 0.0      |
| 3     | 0.0               | 50     | 0.0      |
| 4     | 0.0               | 60     | 0.0      |
| 5     | 0.0               | 60     | 0.0      |
| 6     | 0.0               | 60     | 0.0      |
| 7     | 0.0               | 400    | 0.0      |
| 8     | 0.0               | 400    | 0.0      |
| 9     | 0.0               | 400    | 0.0      |

本機は、メモリのデータを内部で保持しているため、一度メモリに書き込んだ値は 何回でも使うことができます。

・メモリ番地0は、読出し専用です。

## 8.13 メモリ機能の拡張

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、メモリへ書き込める設定値の数(メモリの番地)が 99 まで増えます。

また、AC+DC モードにおいてもメモリ動作が可能になり、同じメモリの番地に記 憶させた交流電圧と直流電圧を同時に出力することができます。

# 8.14 電源ライン異常シミュレーション

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、AC モードにおいて本機の出力を停電、電圧上昇(ポッ プ)電圧降下(ディップ)、させて電源ラインの異常シミュレーションを行うこと ができます。



# 8.15 シーケンス動作

シーケンス動作とは、あらかじめ保存しておいた出力電圧、周波数、時間などの組 み合わせの設定を順番(アドレス指定)に呼び出し、出力する動作を言います。RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコン トローラを使用すると、シーケンス動作によって自動運転が可能となります

#### 交流電圧の変化特性

周波数または交流電圧を、設定されただけの時間をかけて直線的に変化させること を「ランプ」といいます。ランプ指定されたアドレスの1つ前のアドレスに設定さ れた値から、ランプ指定されただけの時間をかけて、ランプ指定アドレスの設定値 まで周波数または交流電圧が変化します。

一方、周波数または交流電圧を、段状に変化させることを「ステップ」といいます。 ステップ指定されたアドレスの1つ前のアドレスに設定された値から、ステップ指 定アドレスの設定値まで周波数または交流電圧が段状に変化します。

### ランプ指定とステップ指定

アドレス0にはランプ指定できません。

スタートアドレスのランプ指定は実行時に無視され、ステップ状に変化します。





PCR-LA

# 8.16 ステータス信号とトリガ信号

#### ステータス信号

ステータス信号は、電源ライン異常シミュレーションの場合には T2、T3、T4 の期間(T2=T4=0の場合には T3 期間)、シーケンス動作の場合にはそのアドレスの設定時間の間だけ出力します。電源ライン異常シミュレーションのパラメータ設定については「9.7.1 各パラメータメッセージ」を参照してください。

"ON"を指定すると、本機後面にある SEQ STAT OUT 端子(BNC コネクタ)に "L"の信号が出力されます。"OFF"を指定すると、"H"の信号が出力されます。 "H"はほぼ5V、"L"はほぼ0Vです。

BNC コネクタは、本機の INPUT 端子盤、OUTPUT 端子盤とは絶縁されていま す。ただし PEAK INIT、TRG、STAT の各信号のコモンラインは本機内部で共 有されているので絶縁されていません。また SLOT の内部回路とも絶縁されて いません。ステータス信号出力と実際の出力の変化にはわずかに(100  $\mu$ s 程 度)時間差があります。

注記 ・ステータス信号は、電源ライン異常シミュレーションで各パラメータの設定を 変更した場合や、シーケンス動作でシーケンス内容を変更した場合にも出力さ れることがあります。

#### トリガ信号

トリガ信号はシーケンス動作実行中に出力します。

"ON"を指定すると、本機後面にある SEQ TRIG OUT 端子(BNC コネクタ)に、そのアドレスの設定値に入った時点で数  $10 \mu s$ の間"L"の信号が出力されます。"OFF"を指定すると "H" の信号が出力されます。"H" はほぼ5 V、"L" は、ほぼ 0 V です。

BNC コネクタは、本機の INPUT 端子盤、OUTPUT 端子盤とは絶縁されていま す。ただし PEAK INIT、TRG、STAT の各信号のコモンラインは本機内部で共 有されているので絶縁されていません。また SLOT の内部回路とも絶縁されて いません。トリガ信号出力と実際の出力の変化にはわずかに(100  $\mu$ s 程度) 時間差があります。

| 注記 | • | トリガ信号は、 | シーケンス内容 | 客を変更した場合 | 合にも出力される | ことがあります。 |
|----|---|---------|---------|----------|----------|----------|
|    |   |         |         |          |          |          |

参

### 8.17 高調波電流解析機能

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、出力電流の高調波解析を行うことができます。測定方法 を簡略化しているため、IEC 規格等に適合していません。規格適合測定には、HA01F-PCR-L ハーモニクスアナライザをご使用ください。

### 8.18 特殊波形出力

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、正弦波形以外の波形を出力することができます。出力で きる波形は、正弦波形のピークがつぶれた「ピーククリップ波形」が標準で用意さ れています。各種電子機器だけでなく、化学系の実験や製造設備に使用することが できます。

特殊波形設定モードで波形を波形バンクに設定してから、特殊波形出力モードで波 形バンクを切り替えて出力します。

#### 波形バンク

本機では出力電圧波形のデータを内部のメモリに格納し、そのデータを D/A 変換し て出力電圧の基準波形を作っています。その波形データを格納するメモリの1 波形 分領域のことを波形バンクといい、15 波形分のバンクを持っています。そのバンク に W00 ~ W14 の番号を付け、その番号で波形を選択するようになっています。W00 には、本機の基準電圧波形となる正弦波形が書き込まれていて、その内容を書き換 えることはできません。イニシャルセットアップ状態では、すべての波形バンクに W00 と同じ波形、つまり正弦波が入っています。

#### クレストファクタ

クレストファクタとは、交流波形の実効値とピーク値の比率です。

クレストファクタ=ピーク値÷実効値

波形が正弦波のときは、クレストファクタは 1.41 になります。 商用電源ラインの電 圧波形はピークの部分がつぶれており、クレストファクタは 1.2 から 1.4 になって います。

# 8.19 出力インピーダンス設定

本機の出力インピーダンス(出力抵抗)はほぼ 0Ω です。商用電源は数 mΩ から 数 Ω のインピーダンス(抵抗)を持っています。本機では RS-232C コントロール、 GPIB インターフェース、または RC04-PCR-LA リモートコントローラを使用する と、出力インピーダンスを可変することが可能となり、商用電源と同じ環境をシ ミュレートすることができます。
この機能は本機内でバックアップされています。そのため、設定条件を変更しない 場合には、一度設定すれば以後同じ状態で使用することができます。

## 8.20 出力オン、オフの位相設定

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、出力オン、オフの位相の設定がそれぞれ単独で可能で す。この機能は本体内でバックアップされています。そのため、設定条件を変更し ない場合には、一度設定すれば以後同じ状態で使用することができます。



図 8-9 波形例

## 8.21 AC+DC モード

RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リモートコ ントローラを使用すると、出力電圧モードは「AC モード」、「AC-S モード」、およ び「DC モード」に加えて、「AC+DC モード」が可能になります。「AC+DC モード」 とは、交流電圧に直流電圧を、または直流電圧に交流電圧を重畳する機能です。



## 8.22 コントロールパネル、キー操作の階層

ホームポジションは各出力電圧モード(AC / AC-S / DC)毎における最上位層です。 各機能はさらに階層化されています。

どの機能を使用していても、ESC キーを押すことで、ホームポジションに近づくように階層が上がります(元に戻る方向)。最終的にホームポジションになります。

操作の途中で、どの階層にいるのか分からなくなった場合は、ホームポジションに 戻ることをお勧めします。ホームポジションに戻るための、ESC キーを押す回数は、 そのときの階層によります。ホームポジションに戻って ESC キーを押すと、ピッと ブザー音が鳴ります。 参

照

解說

# 第9章 RS-232CとGPIBメッ セージ解説

この章では、RS-232Cと GPIBのメッセージについて説明します。

 注記・ PCR-LA は PCR-L(従来製品)とのコマンド互換性を考慮していますが、GPIB および RS-232C のレスポンスメッセージにおいて、一部互換性のないものがあ ります。互換性を確保するには、PCR-L モードに設定する必要があります。設 定方法は「6.5 PCR-L コマンド互換性の設定」を参照してください。
 ・ PCR-L コマンド互換性の設定は 2つのモードがあります。

**PCR-LA**モード: PCR-LA の標準状態

PCR-L モード: PCR-L と互換性のある状態

## 9.1 レジスタ関連と汎用デバイスメッセージ

各レジスタのセット、リセットまたは問い合わせとターミネータの指定などの汎用 デバイスメッセージおよび各モードでの共通デバイスメッセージについて説明し ます。

レジスタ関連プログラムメッセージのプログラムデータは 16 進数で記述してくだ さい。レスポンスメッセージは 10 進数で内容を返します。

## \*CLS

全てのレジスタをクリアし、サービスリクエストイネーブルレジスタ(初期値 #H00)、デバイスステータスイネーブルレジスタ(初期値 #H0F)、フォルトアン マスクレジスタ(初期値 #HFC)を初期値に設定します。

#### **プログラムメッセージ** ・構文 コマンドメッセージ: \*CLS

### \*IDN?

本機の機種名と ROM のバージョンを問い合わせます。

**プログラムメッセージ** ・構文 クエリメッセージ: \*IDN?

#### レスポンスメッセージ

\*IDN?に対して本機の機種名をつぎの表示例のように返します。(PCR1000LAの例)

第 9 章

## ALMCLR

本機のアラームをリセットします。

アラーム発生時、ALMCLR メッセージと SELFTEST メッセージを除くメッセージ は、正常に働かないことがあります。

#### プログラムメッセージ

・構文

コマンドメッセージ: ALMCLR

## CLR

エラーレジスタのすべてのビットをリセットします。

#### プログラムメッセージ

- ・構文
  - コマンドメッセージ: CLR

## DSE

デバイスステータスイネーブルレジスタの各ビットをセットまたはリセットしま す。あるいは、レジスタの内容を問い合わせます。

デバイスステータスイネーブルトレジスタについての詳細は、「9.11 レジスタについて」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: DSE <HEX> クエリメッセージ: DSE?

#### ・プログラムデータ

設定值: #H00 ~ #HFF

(例) デバイスステータスイネーブルレジスタの Bit2 をセットする場合 DSE #H04

#### レスポンスメッセージ

DSE? に対してデバイスステータスイネーブルレジスタの内容を返します。

(例) デバイスステータスイネーブルレジスタの Bit3 がセットされている場合 8 を返します。

## DSR?

デバイスステータスレジスタの内容を問い合わせます。

デバイスステータスレジスタについての詳細は、「9.11 レジスタについて」を参照 してください。

#### プログラムメッセージ

・構文

クエリメッセージ: DSR?

#### レスポンスメッセージ

DSR? に対してデバイスステータスレジスタの内容を返します。

(例) デバイスステータスレジスタの Bit3 がセットされている場合8 を返します。

## ERR?

プログラムメッセージにエラーが発生した場合には、ステータスバイトレジスタの ERR ビット (Bit3) が "1" になります。

エラーは ERR? メッセージで読み出すか、CLR メッセージによりエラーレジスタを クリアするとリセットされます。

エラーレジスタについての詳細は「9.11 レジスタについて」を参照してください。

#### プログラムメッセージ

#### ・構文

クエリメッセージ: ERR?

#### レスポンスメッセージ

ERR? に対してエラーレジスタの内容を返してリセットします。

PCR-LA モードでは Bit0、Bit1、Bit2、Bit3 を返します。

PCR-L モードでは Bit0、Bit1、Bit2、Bit3 のうち、Bit2、Bit3 は定義されません。 データエラーまたは無効なメッセージを検出した場合は Bit7を返します。

(例) エラーレジスタの Bit1(範囲外エラー)がセットされている場合2 を返します。

フォルトレジスタの内容を問い合わせます。

フォルトレジスタは FAU? メッセージで読み出すことにより、リセットされます。 フォルトレジスタについての詳細は、「9.11 レジスタについて」を参照してくださ い。

ステータスバイトレジスタの FAU ビット発生許可は、フォルトアンマスクレジス タにより指定することができます。

#### プログラムメッセージ

・構文

クエリメッセージ: FAU?

#### レスポンスメッセージ

FAU? に対してフォルトレジスタの内容を返します。

(例) フォルトレジスタの Bit3 と Bit4 がセットされている場合24 を返します。

## **FUNMASK**

フォルトアンマスクレジスタの各ビットをセットまたはリセットします。あるい は、レジスタの内容を問い合わせます。

フォルトアンマスクレジスタについての詳細は、「9.11 レジスタについて」を参照 してください。

#### プログラムメッセージ

・構文

コマンドメッセージ: FUNMASK <HEX>

クエリメッセージ: FUNMASK?

・プログラムデータ

設定值: #H00 ~ #HFF

(例) フォルトアンマスクレジスタの Bit3 と Bit4 をセットする場合FUNMASK #H18

#### レスポンスメッセージ

FUNMASK? に対してフォルトアンマスクレジスタの内容を返します。

(例) フォルトアンマスクレジスタの Bit3 と Bit4 がセットされている場合 24 を返します。

## HEAD

レスポンスメッセージにプログラムヘッダおよび単位をつけるかどうかを設定し ます。また、HEAD?メッセージによりレスポンスメッセージにプログラムヘッダお よび単位をつけるかどうかの設定値を問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: HEAD  $\{ON | OFF | 1 | 0\}$ 

クエリメッセージ: HEAD?

#### ・プログラムデータ

データ形式: キャラクタ/整数

設定値: OFF(0) プログラムヘッダおよび単位をつけない

(工場出荷時の設定)

- ON(1) プログラムヘッダおよび単位をつける
- (例)「レスポンスメッセージにプログラムヘッダおよび単位をつける」に設定する場合
   HEAD 1
   HEAD ON

#### レスポンスメッセージ

HEAD? に対してレスポンスメッセージにプログラムヘッダおよび単位をつけるか どうかを返します。

(例) 現在の設定が「レスポンスメッセージにプログラムヘッダおよび単位をつける」の場合
 PCR-LA モードでは HEAD 1 を返します。
 PCR-L モードでは HEAD 001 を返します。

## IDN?

本機の機種名と ROM のバージョンを問い合わせます。

#### プログラムメッセージ

#### ・構文

クエリメッセージ: IDN?

#### レスポンスメッセージ

IDN? に対して本機の機種名をつぎの表示例のように返します。(PCR1000LAの例)



注記 · IDN?は従来製品PCR-Lシリーズのプログラムをサポートするためのクエリメッ セージです。PCR-LA で新たにプログラムする際には、\*IDN? を使用してくだ さい。PCR-LA から IDN? で問い合わせた場合のレスポンスメッセージには、機 種名として、PCRXXXXL と返すようになっています。

## LOC

リモート状態からローカルに戻します。

プログラムメッセージ

・構文

コマンドメッセージ: LOC

## MOD?

モードレジスタの内容を問い合わせます。 モードレジスタについての詳細は、「9.11 レジスタについて」を参照してください。

#### プログラムメッセージ

・構文

クエリメッセージ: MOD?

レスポンスメッセージ

MOD? に対してモードレジスタの内容を返します。

(例) モードレジスタの Bit4 と Bit5 がセットされている場合
 48 を返します

第 9 章

## **OPT?**

オプションカードレジスタの内容を問い合わせます。

オプションカードレジスタについての詳細は、「9.11 レジスタについて」を参照し てください。

#### プログラムメッセージ

#### ・構文

クエリメッセージ: OPT?

#### レスポンスメッセージ

OPT? に対してオプションカードレジスタの内容を返します。

(例) オプションカードレジスタの Bit2 がセットされている場合4 を返します

### **\*RST/SETINI**

本機を工場出荷時の設定にリセットします。設定内容については「2.7 動作確認」 「■ イニシャルセットアップ状態」を参照してください。

ただし、次の設定値はクリアされずに保持されます。

- ・ メモリにストアされている値
- シーケンス動作のパラメータ
- · アラーム時は無効なメッセージになります。
- ・ ユーザ定義波形のデータ

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: \*RST SETINI 本機のアラーム原因と発生した場所を問い合わせます。

アラーム発生時は ALMCLR メッセージと SELFTEST メッセージを除くメッセージ は、正常に働かないことがあります。

複数のアラームが発生した場合は、SELFTEST?メッセージを繰り返し実行することにより、各アラームの情報を順番に問い合わせすることができます。

最終アラームを問い合わせた後は、SELFTEST? メッセージを実行しても最終ア ラーム情報が返ります。

アラームの発生場所(Ad. 番号)、アラーム番号(No.)、アラーム発生時の対処方法 については「4.6.1 アラーム発生時の操作」を参照してください。

#### プログラムメッセージ

・構文

クエリメッセージ: SELFTEST?

#### レスポンスメッセージ

SELFTEST? に対して現在のアラーム状態を返します。

- (例) 現在、アラームが無い場合OK を返します。
- (例) ADR03 (Ad. 番号) で、No.4 のアラームが発生している場合 ADR03, NO4 を返します。

## SILENT

RS-232Cによる制御を行う場合に、レスポンスメッセージターミネータにより区切られたメッセージに対するアクノリッジメッセージを返すかどうかを設定します。 また、SILENT?メッセージによりアクノリッジメッセージを返すかどうかの設定 値を問い合わせます。

アクノリッジメッセージは、"OK" または "ERROR" の何れかを返します。

アクノリッジメッセージを受信する場合は、RS-232Cの設定を全二重通信の設定に します。

全二重通信: 2 者間のデータ伝送において、データを常に両方向に流すことができ る通信方式。全二重通信の設定は PC の取扱説明書を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: SILENT {ON | OFF | 1 | 0}

クエリメッセージ: SILENT?

#### ・プログラムデータ

データ形式: キャラクタ/整数

設定値: OFF(0) アクノリッジメッセージを返す ON(1) アクノリッジメッセージを返さない(工場出荷時の設定)

(例)「アクノリッジメッセージを返さない」に設定する場合

SILENT 1 SILENT ON

#### レスポンスメッセージ

SILENT? に対してアクノリッジメッセージの設定値を返します。

(例) 現在の設定が「アクノリッジメッセージを返さない」の場合 1を返します。 ステータスバイトレジスタの内容を問い合わせます。

ステータスバイトレジスタは STB? メッセージで読み出すことにより、リセットされます。

ステータスバイトレジスタについての詳細は、「9.11 レジスタについて」を参照し てください。

サービスリクエストの発生の許可は、アンマスクレジスタにより指定することがで きます。

#### プログラムメッセージ

・構文

クエリメッセージ: \*STB? STB?

#### レスポンスメッセージ

STB? に対してステータスバイトレジスタの内容を返します。PCR-L モードではbit4 をマスクします。

(例) ステータスバイトレジスタの Bit2 と Bit3 がセットされている場合 12 を返します。

## STS?

ステータスレジスタの内容を問い合わせます。

ステータスレジスタについての詳細は、「9.11 レジスタについて」を参照してくだ さい。

#### プログラムメッセージ

#### ・構文

クエリメッセージ: STS?

#### レスポンスメッセージ

STS? に対してステータスレジスタの内容を返します。

(例) ステータスレジスタの Bit4 と Bit5 がセットされている場合48 を返します

## TERM

レスポンスメッセージターミネータを設定、また、TERM? メッセージによりレスポ ンスメッセージターミネータの設定値を問い合わせます。

本機では、レスポンスメッセージターミネータとして、下記に示す4種類のいずれ かを選択できます。(EOI は GPIB のときだけ付きます。RS-232C には EOI はありま せん。)

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: TERM {0|1|2|3}

クエリメッセージ: TERM?

・プログラムデータ

```
データ形式: 整数
```

設定値:RS-232C 0 CRLF(工場出荷時の設定) 1 CR 2 LF GPIB 0 CRLF+EOI(工場出荷時の設定) 1 CR+EOI 2 LF+EOI 3 EOI CR: Carriage Return

```
LF: Line Feed
```

```
EOI: End or Identify
```

(例) レスポンスメッセージターミネータを CR に設定する場合 (RS-232C)TERM 1

#### レスポンスメッセージ

TERM? に対して現在設定されているレスポンスメッセージターミネータを返します。

(例) レスポンスメッセージターミネータがCRに設定されている場合(RS-232C)
 PCR-LA モードでは1を返します。
 PCR-L モードでは 001を返します。

## UNMASK

アンマスクレジスタ(サービスリクエストイネーブルレジスタ)の各ビットをセットまたはリセットします。あるいは、レジスタの内容を問い合わせます。 アンマスクレジスタについての詳細は、「9.11 レジスタについて」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: UNMASK <HEX>

クエリメッセージ: UNMASK?

・プログラムデータ

設定值: #H00 ~ #HFF

(例) アンマスクレジスタの Bit2 と Bit3 をセットする場合UNMASK #HOC

#### レスポンスメッセージ

UNMASK? に対してアンマスクレジスタの内容を10進数で返します。

(例) アンマスクレジスタの Bit2 と Bit3 がセットされている場合12 を返します。

## 9.2 動作状態メッセージ

## ACDC

出力オフの時に、AC、AC-S、DC、AC+DC の各出力モードを設定します。あるい は、現在のモードを問い合わせます。

AC、AC-S、DC、AC+DC モードは POWER スイッチをオフにしても保持されます。

#### プログラムメッセージ

- ・構文
  - コマンドメッセージ: ACDC {AC|DC|ACDC|ACS}
  - クエリメッセージ: ACDC?

#### ・プログラムデータ

データ形式: キャラクタ/整数

設定値: AC(0) AC モード (工場出荷時の設定) DC(1) DC モード ACDC(2) AC+DC モード ACS(3) AC-S モード

(例)「DC モード」に設定する場合ACDC 1ACDC DC

#### レスポンスメッセージ

ACDC? に対して現在の出力電圧モードの設定を返します。

(例) 現在の設定が「DC モード」の場合
 PCR-LA モードでは 1 を返します。
 PCR-L モードでは 001 を返します。「AC モード」、「AC+DC モード」、「AC-S モード」の場合それぞれ 000、002、003 を返します。

### HOME

ホームポジションに戻ります。最も深い階層にいる場合も一気に最上位のホームポ ジションに戻ります。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: HOME

## OFFPHASE

AC モードの時、出力オフの位相を設定します。あるいは、出力オフの位相を問い 合わせます。設定は「8.20 出力オン、オフの位相設定」を参照してください。

出力オフの位相は POWER スイッチをオフしても保持されます。

出力オフの位相が設定されている状態では、コントロールパネルの [S-MODE] 表示 エリアに 4 と表示されます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: OFFPHASE {<NR1>|FREE}

クエリメッセージ: OFFPHASE?

#### ・プログラムデータ

データ形式: 整数/キャラクタ

設定値: 0 ~ 360

FREE 位相を設定していない状態

分解能:1

単位: deg

(例) 出力オフ位相を設定しない場合OFFPHASE FREE

#### レスポンスメッセージ

OFFPHASE? に対して現在の出力オフ位相の設定を返します。

(例) 現在の出力オフ位相が設定されていない場合FREE を返します。

## **ONPHASE**

AC モードの時、出力オンの位相を設定します。あるいは、出力オンの位相を問い 合わせます。設定は「8.20 出力オン、オフの位相設定」を参照してください。 出力オンの位相は POWER スイッチをオフしても保持されます。

出力オンの位相が設定されている状態では、コントロールパネルの [S-MODE] 表示 エリアに 4 と表示されます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: ONPHASE {<NR1>|FREE}

クエリメッセージ: ONPHASE?

#### ・プログラムデータ

データ形式: 整数/キャラクタ

- 設定値: 0~360
  - FREE 位相を設定していない状態

分解能:1

単位: deg

(例) 出力オン位相を 90 度に設定する場合ONPHASE 90

#### レスポンスメッセージ

ONPHASE? に対して現在の出力オン位相の設定を返します。

(例) 現在の出力オン位相が 90 度の場合90 を返します。

## OUT

出力の オン、オフ を設定します。あるいは、現在の出力のオン、オフを問い合わ せます。

#### プログラムメッセージ

・構文

コマンドメッセージ: OUT {ON|OFF|1|0} クエリメッセージ: OUT?

・プログラムデータ

データ形式: キャラクタ/整数

設定値: OFF(0) 出力オフ(工場出荷時の設定) ON(1) 出力オン

(例)「出力オン」に設定する場合 OUT 1 OUT ON

レスポンスメッセージ

OUT? に対して現在の出力のオン、オフを返します。

(例) 現在の設定が、出力オンの場合
 PCR-LA モードでは 1 を返します。
 PCR-L モードでは 001 を返します。

## OUTZ

AC モードのとき、出力インピーダンス(出力抵抗)を設定します。あるいは、出 カインピーダンス(出力抵抗)を問い合わせます。

出力インピーダンスが設定されているときに出力電圧レンジを切り替えると、出力 インピーダンスの設定値はリセットされ 0Ωになります。

出力インピーダンスは POWER スイッチをオフしても保持されます。

出力インピーダンスが設定されている状態では、コントロールパネルの [S-MODE] 表示エリアに2と表示されます。

#### プログラムメッセージ

・構文

コマンドメッセージ: OUTZ <NR2> クエリメッセージ: OUTZ?

#### ・プログラムデータ

設定値と分解能:

|           | 設定範                | 囲 (Ω)              | 分解能(Ω)    |           |  |
|-----------|--------------------|--------------------|-----------|-----------|--|
|           | 100 V レンジ          | 200 V レンジ          | 100 V レンジ | 200 V レンジ |  |
| PCR500LA  | $0.0 \sim 4.0$     | $0.0 \sim 16.0$    | 40 m      | 160 m     |  |
| PCR1000LA | $0.0\sim 2.0$      | $0.0 \sim 8.0$     | 20 m      | 80 m      |  |
| PCR2000LA | $0.0 \sim 1.0$     | $0.0 \sim 4.0$     | 10 m      | 40 m      |  |
| PCR4000LA | $0.0\sim 0.5$      | $0.0\sim 2.0$      | 5 m       | 20 m      |  |
| PCR6000LA | $0.000 \sim 0.333$ | $0.000 \sim 1.333$ | 3.33 m    | 13.33 m   |  |

単位: Ω

プログラムデータが設定可能なステップの間にある場合には、出力インピーダンスの設定値は、プログラムデータの設定値以下の最大の値に変換されます。次ページの OUTZPER を使用すれば、最大値や分解能を考慮する必要がなくなります。

(例) PCR1000LA で出力電圧レンジが 100 V 場合、設定可能な抵抗値の最大値は
 2 Ω でその分解能は 0.02 Ω です。

OUTZ 1.01

この値は分解能の間になるので実際に設定される抵抗値は、1.01 を越えない最大の値の1Ωになります。

#### レスポンスメッセージ

OUTZ? に対して現在の出力インピーダンスの設定を返します。

- (例) 現在の出力インピーダンスの設定が1Ωの場合1.000を返します。
- (例) 現在の出力インピーダンスの設定がされていない場合 0.000を返します。

AC モードのとき、出力インピーダンス(出力抵抗)を百分率で設定します。あるいは、出力インピーダンス(出力抵抗)を百分率で問い合わせます。前述の OUTZ と比べて機種や電圧レンジによる設定範囲および分解能を気にする必要はありません。

出力インピーダンスが設定されているときに出力電圧レンジを切り替えると、出力 インピーダンスの設定値はリセットされ0%になります。

出力インピーダンスは POWER スイッチをオフしても保持されます。

出力インピーダンスが設定されている状態では、コントロールパネルの [S-MODE] 表示エリアに 2 と表示されます。

#### プログラムメッセージ

・構文

コマンドメッセージ: OUTZPER <NR1> クエリメッセージ: OUTZPER?

・プログラムデータ

- 設定值: 0~100
- 分解能:1
- 単位: %
- (例) 出力インピーダンスを 40% に設定する場合OUTZPER 40

#### レスポンスメッセージ

OUTZPER? に対して現在の出力インピーダンス(%)の設定を返します。

(例) 現在の出力インピーダンスの設定が 30% の場合30 を返します。

## RANGE

出力オフの時に、出力電圧レンジを設定します。あるいは、現在の出力レンジを問 い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: RANGE {0|1|100|200}

クエリメッセージ: RANGE?

#### ・プログラムデータ

データ形式: キャラクタ/整数

設定値: 0、100 100 V レンジ (工場出荷時の設定)
 1、200 200 V レンジ

- (例) 「200 V レンジ」に設定する場合
  - RANGE 1 RANGE 200

#### レスポンスメッセージ

RANGE? に対して現在の出力電圧レンジの設定を返します。

- (例) 現在の設定が「100 V レンジ」の場合
   PCR-LA モードでは 0 を返します。
   PCR-L モードでは 000 を返します。
- (例) 現在の設定が「200 V レンジ」の場合
   PCR-LA モードでは 1 を返します。
   PCR-L モードでは 001 を返します。
  - ※ Ver. 3.08 以前のバージョンでは、100,200 を返します。

## SYNC

AC モードのとき、シンクロ動作をするかしないかを設定します。あるいは、シン クロ動作をするかしないかの設定値を問い合わせます。シンクロ動作については 「4.4 シンクロ機能」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: SYNC {ON|OFF|1|0}

クエリメッセージ: SYNC?

#### ・プログラムデータ

データ形式: キャラクタ/整数

- 設定値:OFF(0) シンクロ動作しない(工場出荷時の設定)
   ON(1) シンクロ動作する
- (例)「シンクロ動作する」に設定する場合 SYNC 1 SYNC ON

#### レスポンスメッセージ

SYNC? に対して現在のシンクロ動作の設定を返します。

(例) 現在の設定が「シンクロ動作する」の場合
 PCR-LAモードでは1を返します。
 PCR-Lモードでは001を返します。

## 9.3 出力電圧・周波数設定メッセージ

### DCVSET

直流電圧値を設定します。あるいは、直流電圧値を問い合わせます。

プログラムデータの設定範囲は、出力電圧レンジと電圧リミット値により規定され ます。

本機が有効範囲外のデータを受けた場合には、そのデータを無視してエラーレジス タの Bitl をセットします。ERR? メッセージで確認することができます。

プログラムメッセージ

・構文

コマンドメッセージ: DCVSET <NR2>

クエリメッセージ: DCVSET?

・プログラムデータ

設定値: 0 常に設定可能 電圧設定ローリミット値  $\leq$  設定値  $\leq$  電圧設定ハイリミット値 DC モードで、出力レンジが 100 V レンジのとき -215.5 V  $\leq$  設定値  $\leq$  215.5 V DC モードで、出力レンジが 200 V レンジのとき -431.0 V  $\leq$  設定値  $\leq$  431.0 V

AC+DC モードで、出力レンジが 100 V レンジのとき

交流電圧設定値×1.41+設定値の絶対値 ≤ 215.5 V

AC+DC モードで、出力レンジが 200 V レンジのとき

交流電圧設定値×1.41+設定値の絶対値 ≤ 431.0 V

分解能: 0.1

単位: V

(例) 直流電圧を 100 V に設定する場合DCVSET 100

#### レスポンスメッセージ

DCVSET? に対して現在の直流電圧設定値を返します。

(例) 現在の直流電圧設定値が 100 V の場合 100.0 を返します。

## FSET

出力周波数を設定します。あるいは、出力周波数を問い合わせます。 プログラムデータの設定範囲は、周波数リミット値により規定されます。 本機が有効範囲外のデータを受けた場合には、そのデータを無視してエラーレジス タの Bitl をセットします。ERR? メッセージで確認することができます。

#### プログラムメッセージ

#### ・構文

- コマンドメッセージ: FSET <NR2>
- クエリメッセージ: FSET?
- ・プログラムデータ
  - 設定値: 周波数ローリミット値 ≤ 設定値 ≤ 周波数ハイリミット値 1.00 Hz ≤ 設定値 ≤ 999.9 Hz
  - 分解能: 1.00~99.99:0.01
    - $100.0 \sim 999.9:0.1$
  - 単位: Hz
  - (例) 設定周波数を 400 Hz に設定する場合FSET 400

#### レスポンスメッセージ

- FSET?に対して周波数設定値を返します。
  - (例) 現在の周波数設定値が 400 Hz の場合400 を返します。

## **VSET/ACVSET**

交流電圧値を設定します。あるいは、交流電圧値を問い合わせます。

VSET メッセージと ACVSET メッセージは完全に同じ働きをします。

プログラムデータの設定範囲は、出力電圧レンジと電圧リミット値により規定され ます。

本機が有効範囲外のデータを受けた場合には、そのデータを無視してエラーレジス タの Bitl をセットします。ERR? メッセージで確認することができます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: VSET <NR2>

ACVSET <NR2>

クエリメッセージ: VSET?

ACVSET?

・プログラムデータ

データ形式: 実数

設定値:0 常に設定可能

電圧設定ローリミット値 ≦ 設定値 ≦ 電圧設定ハイリミット値

ACモードで、出力レンジが 100 V レンジのとき

0 ≤ 設定値 ≤ 152.5 V

ACモードで、出力レンジが 200 V レンジのとき

0 ≤ 設定値 ≤ 305.0 V

AC+DC モードで、出力レンジが 100 V レンジのとき

設定値×1.41+直流電圧設定値の絶対値 ≤ 215.5 V

AC+DC モードで、出力レンジが 200 V レンジのとき

設定値×1.41 + 直流電圧設定値の絶対値 ≤ 431.0 V

分解能: 0.1

単位: V

(例) 交流電圧を 100 V に設定する場合VSET 100ACVSET 100

レスポンスメッセージ

VSET?/ACVSET? に対して交流電圧設定値を返します。

(例) 現在の交流電圧設定値が 100 V の場合 100.0 を返します。

## 9.4 出力測定メッセージ

出力測定メッセージは、本機の出力端子を測定したり、測定モードを設定します。

## 9.4.1 出力電圧の測定

## VM?

出力電圧の測定方法を問い合わせます。

#### プログラムメッセージ

・構文

クエリメッセージ: VM?

#### レスポンスメッセージ

VM? に対して現在の出力電圧の測定方式の設定を返します。

- (例) 現在の測定方式の設定が実効値測定の場合 VMRMSを返します。
- (例) 現在の測定方式の設定が平均値測定の場合 VMAVE を返します。
- (例) 現在の測定方式の設定がピーク値測定の場合 VMPKを返します。

## VMAVE

出力電圧の測定方法を平均値測定に設定します。(AC モード、AC-S モード以外で 有効)

**プログラムメッセージ** ・構文 コマンドメッセージ: VMAVE

## VMPK

出力電圧の測定方法をピーク値測定に設定します。

**プログラムメッセージ** ・構文 コマンドメッセージ: VMPK

## VMSET

電圧表示を設定値にします。

プログラムメッセージ

・構文

コマンドメッセージ: VMSET

#### VMRMS

出力電圧の測定方法を実効値測定(工場出荷時)に設定します。

プログラムメッセージ

・構文

コマンドメッセージ: VMRMS

## VOUT?

現在の測定方法による出力電圧の直前の測定値を問い合わせます。 現在の測定方法は VM? メッセージで確認することができます。 本機の電圧測定サイクルは、出力周波数によって変化します(約0.5秒~2秒)。こ の測定サイクル間は、何回 VOUT? メッセージを受けても同じデータを返します。デ バイスステータスレジスタの DAV ビット(Bit2)を活用すると、効果的にプログ ラミングを行うことができます。

 デバイスステータスレジスタの DAV ビット(Bit2)の活用
 デバイスステータスレジスタの Bit2 は、計測値の更新を表わします。計測値の
 クエリメッセージ(VOUT?、IOUT?など)を実行するとリセットされ、本機の
 内部で計測値の更新が行なわれるとセットされます。

 本機では、計測値が更新されるまで約0.5秒~2秒の時間がかかります。ステー
 タスレジスタの Bit を監視することにより、タイマで計測値の更新待ちをせずに
 プログラムを作成することができます。

プログラムメッセージ

・構文

クエリメッセージ: VOUT?

レスポンスメッセージ

VOUT? に対して、現在の測定方法によるその直前の出力電圧の測定値を返します。

(例) 現在の出力電圧の測定値が 100 V の場合 100.0 を返します。

## 9.4.2 出力電流の測定

## IM?

出力電流の測定方法を問い合わせます。

プログラムメッセージ

・構文

クエリメッセージ: IM?

#### レスポンスメッセージ

IM? に対して現在の出力電流の測定方式の設定を返します。

- (例) 現在の測定方式の設定が実効値測定の場合 IMRMS を返します。
- (例) 現在の測定方式の設定が平均値測定の場合 IMAVE を返します。
- (例) 現在の測定方式の設定がピーク値測定の場合IMPK を返します。
- (例) 現在の測定方式の設定がピークホールド値測定の場合
   IMPKH を返します。

### IMAVE

出力電流の測定方法を平均値測定に設定します。(AC モード、AC-S モード以外で 有効)

#### プログラムメッセージ

・構文

コマンドメッセージ: IMAVE

## **IMPK**

出力電流の測定方法をピーク値測定に設定します。

プログラムメッセージ ・構文

コマンドメッセージ: IMPK

### IMPKH

出力電流の測定方法をピークホールド値測定に設定します。

プログラムメッセージ

・構文 コマンドメッセージ: IMPKH

### IMRMS

出力電流の測定方法を実効値測定(工場出荷時の設定)に設定します。

プログラムメッセージ

・構文

コマンドメッセージ: IMRMS

## IOUT?

現在の測定方法による出力電流の直前の測定値を問い合わせます。 現在の測定方法は IM? メッセージで確認することができます。 本機の電流の測定サイクルは、出力周波数によって変化します(約0.5秒~2秒)。 この測定サイクルの間は、何回 IOUT? メッセージを受けても同じデータを返しま す。デバイスステータスレジスタの DAV ビット(Bit2)を活用すると、効果的に プログラミングを行うことができます。

 デバイスステータスレジスタの DAV ビット(Bit2)の活用
 デバイスステータスレジスタの Bit2 は、計測値の更新を表わします。計測値の
 クエリメッセージ(vour?、IOUT?など)を実行するとリセットされ、本機の
 内部で計測値の更新が行なわれるとセットされます。

 本機では、計測値が更新されるまで約0.5秒~2秒の時間がかかります。ステー
 タスレジスタの Bit を監視することにより、タイマで計測値の更新待ちをせずに
 プログラムを作成することができます。

プログラムメッセージ

・構文

クエリメッセージ: IOUT?

レスポンスメッセージ

IOUT? に対して、現在の測定方法による出力電流の直前の測定値を返します。

(例) 現在の出力電流の測定値が 10 A の場合 10.0 を返します。

## PEAKINIT

ピークホールド値をリセットします。

**プログラムメッセージ** ・構文 コマンドメッセージ: PEAKINIT

## 9.4.3 電力・皮相電力・力率の測定

### PF?

負荷接続時、力率を問い合わせます。 電力測定値と VA 測定値から計算して求めます。

**プログラムメッセージ** ・構文 クエリメッセージ: PF?

レスポンスメッセージ
PF? に対して現在の力率を返します。
(例) 現在の力率が 0.60 の場合
0.60 を返します。

## VA?

負荷接続時、皮相電力を問い合わせます。 皮相電力は電圧と電流の実効値の測定値から計算して求めます。

#### プログラムメッセージ

・構文

クエリメッセージ: VA?

#### レスポンスメッセージ

VA? に対して現在の皮相電力を返します。

(例) 現在の皮相電力が 10.00 VA の場合10.00 を返します。

メッ

セ

| ジ 解

説

## WATT?

負荷接続時、出力電力を問い合わせます。

#### プログラムメッセージ

・構文

クエリメッセージ: WATT?

#### レスポンスメッセージ

WATT? に対して現在の出力電力を返します。

(例) 現在の出力電力が 10.0 W の場合 10.0 を返します。

## 9.4.4 高調波解析

本機は出力電流の高調波解析を行うことができます。測定方法を簡略化しているため、IEC 規格等に適合していません。規格適合測定には、HA01F-PCR-L ハーモニクスアナライザをご使用ください。

FFT ON メッセージを受けて高調波解析モードに入ると、本機は次のメッセージだけを受け付けます。

- ・ クエリメッセージ ・ OUT メッセージ
- VSET メッセージ
   ACVSET メッセージ
- FSET メッセージ
   CURHARMA? メッセージ
- CURHARMP? メッセージ
   FFT OFF メッセージ
- ・ FFTHOLD メッセージ

高調波解析モードを終了する場合には FFT OFF メッセージを使います。

#### **CURHARMA?**

各次数の高調波成分を電流で表わした値を問い合わせます。

高調波解析の測定サイクルは、出力周波数によって変化します(約1秒~4秒)。この測定サイクルの間は、何回 CURHARMA? メッセージを受けても同じデータを返します。デバイスステータスレジスタの DAV ビット(Bit2)を活用すると、効果的にプログラミングを行うことができます。

このメッセージを実行する前に、FFT ON メッセージ(9-33ページの「FFT」)で高 調波電流解析モードに入っておく必要があります。

- 解説 ・ デバイスステータスレジスタの DAV ビット (Bit2) の活用
- デバイスステータスレジスタの Bit2 は、計測値の更新を表わします。計測値の クエリメッセージ(VOUT?、IOUT?など)を実行するとリセットされ、本機の 内部で計測値の更新が行なわれるとセットされます。 本機では、計測値が更新されるまで約1秒~4秒の時間がかかります。デバイ スステータスレジスタの Bit を監視することにより、タイマで計測値の更新待ち をせずにプログラムを作成することができます。

プログラムメッセージ

・構文

- クエリメッセージ: CURHARMA {<NR1>|ODD|EVEN|LOW|HIGH}?
- ・プログラムデータ

データ形式: キャラクタ/整数

| 設定值: | 値    | $1 \sim 40$                      |
|------|------|----------------------------------|
|      |      | <nr1>次高調波データだけを返します</nr1>        |
|      | ODD  | 奇数次高調波データを "," で区切って返します         |
|      | EVEN | 偶数次高調波データを "," で区切って返します         |
|      | LOW  | 1 次~ 20 次の高調波データを "," で区切って返します  |
|      | HIGH | 21 次~ 40 次の高調波データを "," で区切って返します |
|      |      |                                  |

- (例) 第3次高調波電流値を返す場合CURHARMA 3?
- (例) 偶数次高調波電流値を返す場合CURHARMA EVEN?

#### レスポンスメッセージ

CURHARMA {<NR1>|ODD|EVEN|LOW|HIGH}? に対して各次数の高調波成分を電 流で表わした値を返します。

- (例) 第3次高調波電流値が10.0 A の場合、CURHARMA 3? に対して 10.0 を返します。
- (例) 偶数次高調波電流値の場合は 20 個のデータを返します。

第 9 章

### **CURHARMP?**

基本波成分の電流値を 100% として、高調波の電流値の 百分率を問い合わせます。 高調波解析の測定サイクルは、出力周波数によって変化します(約1秒~4秒)。こ の測定サイクルの間は、何回 CURHARMA? メッセージを受けても同じデータを返し ます。デバイスステータスレジスタの DAV ビット(Bit2)を活用すると、効果的 にプログラミングを行うことができます。

このメッセージを実行する前に、FFT ON メッセージ(9-33ページの「FFT」)で高 調波電流解析モードに入っておく必要があります。

解説 ・ デバイスステータスレジスタの DAV ビット(Bit2)の活用

デバイスステータスレジスタの Bit2 は、計測値の更新を表わします。計測値の クエリメッセージ(VOUT?、IOUT? など)を実行するとリセットされ、本機の 内部で計測値の更新が行なわれるとセットされます。 本機では、計測値が更新されるまで約1秒~4秒の時間がかかります。デバイ スステータスレジスタの Bit を監視することにより、タイマで計測値の更新待ち をせずにプログラムを作成することができます。

プログラムメッセージ

・構文

```
クエリメッセージ: CURHARMP {<NR1>|ODD|EVEN|LOW|HIGH}?
```

- ・プログラムデータ
  - データ形式: キャラクタ/整数

| 設定値: | 値    | $1 \sim 40$                      |
|------|------|----------------------------------|
|      |      | <nr1>次高調波データだけを返します</nr1>        |
|      | ODD  | 奇数次高調波データを "," で区切って返します         |
|      | EVEN | 偶数次高調波データを "," で区切って返します         |
|      | LOW  | 1 次~ 20 次の高調波データを "," で区切って返します  |
|      | HIGH | 21 次~ 40 次の高調波データを "," で区切って返します |

- (例) 第3次高調波の値を百分率で返す場合 CURHARMP 3?
- (例) 偶数次高調波の値を百分率で返す場合 CURHARMP EVEN?

#### レスポンスメッセージ

**CURHARMP** {<NR1>|ODD|EVEN|LOW|HIGH}? に対して各次数の高調波成分を百 分率で表わした値を返します。

- (例) 第3次高調波の値を百分率が20.0%の場合、CURHARMP 3?に対して20.0を返します。
- (例) 偶数次高調波の値を百分率で測定する場合は 20 個のデータを返します。

## FFT

高調波電流解析モードに入るか、終了するかを設定します。あるいは、高調波電流 解析モードに入っているかどうかを問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: FFT {ON|OFF|1|0} クエリメッセージ: FFT?

・プログラムデータ

データ形式: キャラクタ/整数

| 設定值: OFF(0)   | 高調波電流解析モードを終了する |
|---------------|-----------------|
| <b>ON</b> (1) | 高調波電流解析モードに入る   |

(例) 高調波電流解析モードに入る場合FFT 1FFT ON

#### レスポンスメッセージ

FFT? に対して高調波電流解析モードに入っているかどうかを返します。

(例) 高調波電流解析モードに入っている場合
 PCR-LA モードでは 1 を返します。
 PCR-L モードでは 001 を返します。

## FFTHOLD

FFT 演算を一時停止して高調波解析データを保持します。 一時停止状態になると現在のデータを保持します。

プログラムメッセージ

・構文

コマンドメッセージ: FFTHOLD {ON|OFF|1|0}

・プログラムデータ

データ形式: キャラクタ/整数

設定値: OFF(0) 一時停止解除 ON(1) 一時停止

(例) FFT 演算を一時停止する場合 FFTHOLD 1 FFTHOLD ON

## 9.5 リミット値設定メッセージ

## 9.5.1 電圧リミット値

■ 電圧リミット値の設定可能範囲

電圧リミット値の設定可能範囲は、本機の200 V レンジの設定範囲です。各モード における数値を下表に示します。

| 出力電圧モード   | レンジ          | ローリミット     |                   | ハイリミット  |             |
|-----------|--------------|------------|-------------------|---------|-------------|
| AC モード    | 200 V        | <b></b>    | 0 [Vrms]          | <b></b> | 05.0 [Vrms] |
| AC-S モード  | 100 V X ML 0 | 0 [ v misj | 文派 505.0 [VIIIIS] |         |             |
| DC モード    | 200 V        | 古法         | 431 0 [V]         | 古法      | 431 0 [V]   |
| AC+DC モード | 100 V        | 但.7几       | -451.0[V]         | [ 匹 //L | 4J1.0[V]    |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

## ACVHI

交流電圧ハイリミット値(工場出荷時は 305.0 V)を設定します。あるいは、交流 電圧ハイリミット値を問い合わせます。

#### プログラムメッセージ
・構文

コマンドメッセージ: ACVHI <NR2>

クエリメッセージ: ACVHI?

- ・プログラムデータ
  - 設定値: 0.0 ~ 305.0 (ただし ACVLO 設定値超)
  - 分解能: 0.1
  - 単位: V
  - (例) 交流電圧ハイリミット値を 132 V に設定する場合ACVHI 132

#### レスポンスメッセージ

ACVHI?に対して現在の交流電圧ハイリミット値を返します。

(例) 現在の交流電圧ハイリミット値が 132.0 V 場合 132.0 を返します。

## ACVLO

交流電圧ローリミット値(工場出荷時は 0.0 V)を設定します。あるいは、交流電 圧ローリミット値を問い合わせます。

#### プログラムメッセージ

#### ・構文

- コマンドメッセージ: ACVLO <NR2> クエリメッセージ: ACVLO?
- ・プログラムデータ
  - 設定値: 0.0 ~ 305.0 (ただし ACVHI 設定値未満)
  - 分解能: 0.1
  - 単位: V
  - (例) 交流電圧ローリミット値を 200 V に設定する場合ACVLO 200

#### レスポンスメッセージ

ACVLO? に対して現在の交流電圧ローリミット値を返します。

(例) 現在の交流電圧ローリミット値が 200.0 V 場合 200.0 を返します。

## DCVHI

直流電圧ハイリミット値(工場出荷時は 431.0 V)を設定します。あるいは、直流 電圧ハイリミット値を問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: DCVHI <NR2> クエリメッセージ: DCVHI?

- ・プログラムデータ
  - 設定値: -431.0 ~ +431.0 (ただし DCVLO 設定値超)

分解能: 0.1

- 単位: V
- (例) 直流電圧ハイリミット値を 100 V に設定する場合DCVHI 100

## レスポンスメッセージ

DCVHI?に対して現在の直流電圧ハイリミット値を返します。

(例) 直流電圧ハイリミット値が 100.0 V 場合 100.0 を返します。

## DCVLO

直流電圧ローリミット値(工場出荷時は -431.0 V)を設定します。あるいは、直流 電圧ローリミット値を問い合わせます。

#### プログラムメッセージ

・構文 コマンドメッセージ: DCVLO <NR2> クエリメッセージ: DCVLO?
・プログラムデータ 設定値: -431.0 ~ +431.0 (ただし DCVHI 設定値未満) 分解能: 0.1 単位: V

(例) 直流電圧ローリミット値を 0V に設定する場合DCVLO 0

### レスポンスメッセージ

DCVLO? に対して現在の直流電圧ローリミット値を返します。

(例) 現在の直流電圧ローリミット値が 0.0 V 場合0.0 を返します。

## 9.5.2 周波数リミット値

### ■ 周波数リミット値の設定可能範囲

周波数リミット値の設定可能範囲は、本機の最大可変範囲です。各モードにおける 数値を下表に示します。

| 出力電圧モード     | レンジ   | ローリミット              | ハイリミット     |
|-------------|-------|---------------------|------------|
| ACモード       | 200 V | 1.00 [Hz]           | 999.9 [Hz] |
| AC-S モード    | 100 V |                     |            |
| AC+DC モード   | 200 V | 設定できません             |            |
|             | 100 V |                     |            |
| ACIDC E - K | 200 V | AC モードまたは AC-S モードの |            |
| ACTDC C P   | 100 V | 設定か                 | 『有効        |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

## FHI

周波数ハイリミット値(工場出荷時は 999.9 Hz)を設定します。あるいは、周波数 ハイリミット値を問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: FHI <NR2> クエリメッセージ: FHI?

#### ・プログラムデータ

- 設定値: 1.00~999.9 (ただし FLO 設定値超)
- 分解能: 1.00~99.99:0.01
  - $100.0 \sim 999.9$  : 0.1
- 単位: Hz
- (例) 周波数ハイリミット値を 47 Hz に設定する場合FHI 47

#### レスポンスメッセージ

FHI? に対して現在の周波数ハイリミット値を返します。

(例) 現在の周波数ハイリミット値が 47.00 Hz 場合 47.00 を返します。

## FLO

周波数ローリミット値(工場出荷時は 1.00 Hz)を設定します。あるいは、周波数 ローリミット値を問い合わせます。

#### プログラムメッセージ

# ・構文 コマンドメッセージ: FLO <NR2> クエリメッセージ: FLO? ・プログラムデータ 設定値: 1.00 ~ 999.9 (ただし FHI 設定値未満) 分解能: 1.00 ~ 99.99:0.01 100.0 ~ 999.9:0.1 単位: Hz

(例) 周波数ローリミット値を 47 Hz に設定する場合FLO 47

#### レスポンスメッセージ

FLO? に対して現在の周波数ローリミット値を返します。

(例) 現在の波数ローリミット値が 47.00 Hz 場合 47.00 を返します。

## 9.5.3 電流リミット値

### ■ 電流リミット値の設定可能範囲

電流リミット値の設定可能範囲は、下表に示すモードにおいて、定格最大出力電流 の 10% ~ 110% 以内です。実効値で設定します。設定されている出力電圧や周波数 により、出力電流に制限がある場合は、この制限が優先されます。詳細は「8.4 出 力と負荷について」を参照してください。

| 出力電圧モード   | レンジ   | ローリミット  | ハイリミット                     |
|-----------|-------|---------|----------------------------|
| ACモード     | 200 V | 記字できまけく | 交流                         |
| AC-S モード  | 100 V | 収定しるよどん | 1.1 	imes Iac [Arms]       |
| DC モード    | 200 V | 記字できまけく | 直流                         |
| AC+DC モード | 100 V | 収定しるよどん | $1.1 	imes 	ext{ Idc [A]}$ |

#### 定格最大出力電流

| 形名        | IAC [Arms] | IDC [A] |
|-----------|------------|---------|
| PCR500LA  | 5          | 2.5     |
| PCR1000LA | 10         | 5       |
| PCR2000LA | 20         | 10      |
| PCR4000LA | 40         | 20      |
| PCR6000LA | 60         | 30      |

イニシャルセットアップ(工場出荷時設定)は上記と同じです。

第 9 章

## ACILIM

交流電流ハイリミット値を設定します。あるいは、交流電流ハイリミット値を問い 合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: ACILIM <NR2> クエリメッセージ: ACILIM?

・プログラムデータ

設定値: 定格最大電流の10%~110%(工場設定時は定格の1.1倍)

(例) 交流電流ハイリミット値を 3.0 A に設定する場合ACILIM 3.0

#### レスポンスメッセージ

ACILIM? に対して現在の交流電流ハイリミット値を返します。

(例) 現在の交流電流ハイリミット値が 3.00 A の場合3.00 を返します。

## DCILIM

直流電流ハイリミット値を設定します。あるいは、直流電流ハイリミット値を問い 合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: DCILIM <NR2>

クエリメッセージ: DCILIM?

#### ・プログラムデータ

設定値: 定格最大電流の10%~110%(工場設定時は定格の1.1倍)

(例) 直流電流ハイリミット値を 3.0 A に設定する場合DCILIM 3.0

#### レスポンスメッセージ

DCILIM? に対して現在の直流電流ハイリミット値を返します。

(例) 現在の直流電流ハイリミット値が 3.00 A の場合 3.00 を返します。

第 9 章

# 9.6 メモリ設定メッセージ

この項では、メモリ関連で使用するメッセージについて説明します。

## **CLRMEMORY**

メモリ番号1~99のすべての内容をイニシャライズ(工場出荷時の状態)にします。

ACV:交流電圧 0 V

- WB:波形バンク0
- DCV:直流電圧 0 V

FREQ: 周波数 50,60 または 400 Hz

プログラムメッセージ

・構文

コマンドメッセージ: CLRMEMORY

## **FSTO**

現在の周波数の設定を指定したメモリ番号にストアします。あるいは、指定したメ モリ番号の周波数を問い合わせます。 メモリ番号の他の設定値は変化しません。

#### プログラムメッセージ

コマンドメッセージ: FSTO <NR1>

クエリメッセージ: FSTO <NR1>?

- ・プログラムデータ
  - 設定值:1~99
  - 分解能:1
  - (例) メモリ番号 5 に、周波数 60 Hz をストアする場合
     FSET 60
     FSTO 5

#### レスポンスメッセージ

FSTO <NR1>?に対して指定したメモリ番号の周波数を返します。

(例) メモリ番号 5 の周波数が 60 Hz の場合、FSTO 5? に対して
 PCR-LA モードでは 60 を返します。
 PCR-L モードでは 5,60 を返します。

## **MEMSTO**

メモリに設定できるデータをすべて指定してメモリにストアします。あるいは、指 定したメモリ番号の内容を問い合わせます。

コマンドメッセージを複数設定するとき、メモリ番号を省略するとメモリ番号は自 動的に増加します。メモリ番号以外のデータを省略した場合は、それまで設定して いたデータまたは直前に設定したデータが有効になります。

#### プログラムメッセージ

・構文

コマンドメッセージ: MEMSTO <メモリ番号 NR1,交流電圧 NR2,周波数</li>
 NR2,波形バンク NR1, 直流電圧 NR2 >

クエリメッセージ: MEMSTO <メモリ番号NR1 >?

・プログラムデータ <メモリ番号NR1>

- 設定值: 1~99
- 分解能:1
- ・プログラムデータ <交流電圧 NR2 >

設定値: 0~152.5 出力 100 V レンジ 0~305.0 出力 200 V レンジ

- 分解能: 0.1
- 単位: V
- ・プログラムデータ <周波数 NR2 >
  - 設定值: 1.00~999.9
  - 分解能: 1.00~99.99:0.01 100.0~999.9:0.1
  - 単位: Hz
- ・プログラムデータ <波形バンクNR1>
  - 設定値: 0~14 0は読み出し専用
  - 分解能:1
- ・プログラムデータ <直流電圧 NR2 >
  - 設定値: 0 ~ 215.5 出力 100 V レンジ
    - 0 ~ 431.0 出力 200 V レンジ
  - 分解能: 0.1
  - 単位: V

 (例) メモリ番号 5 に、交流電圧 AC 100 V、周波数 50 Hz、波形バンク 1、直流 電圧 DC0 V をストアする場合
 MEMSTO 5,100,50,1,0

#### レスポンスメッセージ

MEMSTO <NR1>? に対して指定したメモリ番号の内容を返します。

 (例) メモリ番号1の内容を問い合わせ、メモリ内容が、交流電圧2V、周波数3 Hz、波形バンク4、直流電圧-5Vの場合、MEMSTO1?に対して PCR-LAモードでは2.0,3.00,4,-5.0を返します。
 PCR-Lモードでは1,2.0,3.00,4,-5.0を返します。

### **VSTO**

現在の交流電圧の設定を指定したメモリ番号にストアします。あるいは、指定した メモリ番号の交流電圧値を問い合わせます。

メモリ番号の他の設定値は変化しません。

プログラムメッセージ

コマンドメッセージ: VSTO <NR1>

クエリメッセージ: VSTO <NR1>?

#### ・プログラムデータ

- 設定值:1~99
- 分解能:1
- (例) メモリ番号 5 に、交流電圧 AC 110 Vをストアする場合
   ACVSET 110
   VSTO 5

#### レスポンスメッセージ

VSTO <NR1>?に対して指定したメモリ番号の交流電圧を返します。

(例) メモリ番号 5 の交流電圧が 110 V の場合 VSTO 5? に対して
 PCR-LA モードでは 110 を返します。
 PCR-L モードでは 5,110 を返します。

# 9.7 電源ライン異常シミュレーションメッセージ

本機の出力を瞬時停電させたり、電圧降下(ディップ)または電圧上昇(ポップ) させたりすることにより、電源ラインの異常シミュレーションを行うことができま す。

シミュレーションを実行するには、電源ライン異常シミュレーションモードに入っ た後(電源ライン異常シミュレーションモードを ON にした後)、各パラメータを 設定します。

### SIMMODE

電源ライン異常シミュレーションモードの ON/OFF を設定します。出力が OFF の時に有効です。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: SIMMODE {ON|OFF|1|0}

#### ・プログラムデータ

データ形式: キャラクタ/整数

設定値: OFF(0)
 電源ライン異常シミュレーションモード OFF(電源投入
 時の設定)
 ON(1)
 電源ライン異常シミュレーションモード ON

(例) 電源ライン異常シミュレーションモードを ON にする場合

SIMMODE 1

SIMMODE ON

電源ライン異常シミュレーションモードでは、受け付けるメッセージに制約があり ます。電源ライン異常シミュレーションモードで有効なメッセージを下表にまとめ ます。

| 出力が            | オフのとき     | 出力が オン のとき |
|----------------|-----------|------------|
| • T1           | • T1DEG   | • SIMRUN   |
| • T2           | • ТЗ      | • RUNNING  |
| • T4           | • T5      | · SIMSTOP  |
| • N            | · RPT     | · INT      |
| · POL          | · VSET    | • OUT      |
| $\cdot$ ACVSET | · SIMMODE | ・クエリメッセージ  |
| · T3VSET       | · OUT     |            |
| • RUNNING      | • FSET    |            |
| ・クエリメッ・        | セージ       |            |

レスポンスメッセージ

SIMMODE?に対して電源異常シミュレーションモードに入っているかどうかを返します。

(例) 電源異常シミュレーションモードに入っている場合
 PCR-LA モードでは1を返します。
 PCR-L モードでは 001を返します。

## 9.7.1 各パラメータメッセージ



Ν

出力電圧が元の電圧に復帰して次の電源ライン異常シミュレーションが開始する までの電圧波形のサイクル数を設定します。あるいは電源ライン異常シミュレー ションが開始するまでの電圧波形のサイクル数を問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: N <NR1>

クエリメッセージ: N?

#### ・プログラムデータ

設定値: 0 ~ 999900 分解能: ~ 9999 1 ~ 999900 10 ~ 999900 100

- 単位: サイクル
- (例) 電源ライン異常シミュレーションが開始するまでの電圧波形のサイクル数
   を 1000 サイクルに設定する場合
   N 1000

第 9 章

R

#### レスポンスメッセージ

N? に対して電源ライン異常シミュレーションが開始するまでの電圧波形のサイク ル数を返します。

(例) 電源ライン異常シミュレーションが開始するまでの電圧波形のサイクル数 が1000の場合 1000 を返します。

### POL

電源ライン異常シミュレーションを開始する際の電圧の極性を設定します。あるい は電圧の極性を問い合わせます。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: POL {PLUS | MINUS}

クエリメッセージ: POL?

#### ・プログラムデータ

データ形式: キャラクタ/整数

- 設定值: PLUS(0) + 極性 MINUS(1) - 極性
- (例) 電圧の極性を+にする場合 POL 0 POL PLUS

#### レスポンスメッセージ

POL? に対して電源ライン異常シミュレーションを開始する際の電圧の極性を返し ます。

(例) 電源ライン異常シミュレーションを開始する際の電圧の極性が PLUS(正) の場合 0を返します。

#### RPT

T1 からT5 までの動作を何回繰り返すかを設定します。あるいは何回繰り返すかを 問い合わせます。9999に設定すると無限大になります。

プログラムメッセージ

#### ・構文

コマンドメッセージ: RPT <NR1>

クエリメッセージ: RPT?

・プログラムデータ

設定値:0~9998

9999 無限大

分解能:1

(例) 繰り返す数を 50 に設定する場合 RPT 50

### レスポンスメッセージ

RPT? に対して T1 から T5 までの動作を何回繰り返すかを返します。

(例) T1からT5までの動作を5回繰り返す場合 5を返します。

## **T1**

電圧変動が開始する時間を設定します。あるいは電圧変動が開始する時間を問い合わせます。「図 9-1 パラメータ設定」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: T1 <NR2>

クエリメッセージ: T1?

・プログラムデータ

設定值: 0.0 ~ 999.9

分解能: 0.1

単位: ms

(例) 電圧変動が開始する時間を 200 ms に設定する場合 T1 200

#### レスポンスメッセージ

T1?に対して現在の電圧変動が開始する時間を返します。

(例) 電圧変動が開始する時間が 100.0 ms 場合 100.0 を返します。

## T1DEG

電圧変動が開始する位相を設定します。あるいは電圧変動が開始する位相を問い合わせます。「図 9-1 パラメータ設定」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: T1DEG <NR1>

クエリメッセージ: T1DEG?

#### ・プログラムデータ

設定值: 0~360

- 分解能:1
- 単位: deg
- (例) 電圧変動が開始する位相を 100 deg に設定する場合 T1DEG 100

#### レスポンスメッセージ

T1DEG? に対して現在の電圧変動が開始する位相を返します。

(例) 電圧変動が開始する位相が 90°の場合90 を返します。

## T2

出力電圧が変動電圧 V(T3)に達するまでの時間(変化時間)を設定します。ある いは出力電圧が変動電圧 V(T3)に達するまでの時間を問い合わせます。「図 9-1 パ ラメータ設定」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: T2 <NR2>

クエリメッセージ: T2?

#### ・プログラムデータ

設定值: 0 ms ~ 99.99 s

分解能:~9999ms:1

 $\sim$  99.99 s : 0.01

単位: ~ 9999 ms:ms

 $\sim$  99.99 s : s

(例) 出力電圧が変動電圧 V (T3) に達するまでの時間(変化時間)を2s に設定する場合
 T2 2S

#### レスポンスメッセージ

T2? に対して現在の出力電圧が変動電圧 V(T3)に達するまでの時間(変化時間) を返します。

(例) 出力電圧が変動電圧 V (T3) に達するまでの時間(変化時間)が2 s の場合 2.00 を返します。

#### Т3

出力電圧が変動電圧 V(T3)になっている時間を設定します。あるいは出力電圧が 変動電圧 V(T3)になっている時間を問い合わせます。この値が0のときには電源 ライン異常シミュレーションは開始しません。「図 9-1パラメータ設定」を参照して ください。

```
プログラムメッセージ
```

・構文

コマンドメッセージ: T3 <NR2>

- ・プログラムデータ
  - 設定值: 0.0 ~ 9999
  - 分解能:~ 999.9:0.1

 $\sim 9999:1$ 

単位: ms

(例) 出力電圧が変動電圧 V (T3) になっている時間を 100 ms に設定する場合 T3 100

#### レスポンスメッセージ

T3?に対して現在の出力電圧が変動電圧V(T3)になっている時間を返します。

(例) 出力電圧が変動電圧 V (T3) になっている時間が 100 ms の場合 100 を返します。

## **T3VSET**

変動電圧 V(T3)を設定します。あるいは変動電圧 V(T3)を問い合わせます。この値が出力電圧の設定値の関係により、次のように動作が決まります。「図 9-1 パラ メータ設定」を参照してください。

- ・ 変動電圧 V (T3) >出力電圧の設定値 → 電圧上昇 (ポップ)
- ・ 変動電圧 V(T3) <出力電圧の設定値 → 電圧降下(ディップ)
- · 変動電圧 V (T3) = 0 V → 停電

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: T3VSET <NR2>

クエリメッセージ: T3VSET?

- ・プログラムデータ <交流電圧>
  - 設定値: 0~152.5 U~305.0 出力 100 V レンジ 0~305.0 出力 200 V レンジ

分解能: 0.1

単位: V

(例) 変動電圧 V (T3) を 70 V にする場合T3VSET 70

#### レスポンスメッセージ

**T3VSET?** に対して変動電圧 V (T3) を返します。

(例) 変動電圧 V (T3) が70 V の場合70.0 を返します。

## **T**4

出力電圧が変動電圧 V(T3)から元の電圧に戻るまでの時間を設定します。あるい は出力電圧が変動電圧 V(T3)から元の電圧に戻るまでの時間を問い合わせます。 「図 9-1 パラメータ設定」を参照してください。

#### プログラムメッセージ

#### ・構文

コマンドメッセージ: T4 <NR2>

クエリメッセージ: T4?

#### ・プログラムデータ

設定值: 0 ms ~ 99.99 s

- 分解能:~9999ms:1
  - $\sim$  99.99 s : 0.01
- 単位: ~ 9999 ms:ms

 $\sim$  99.99 s : s

(例) 出力電圧が変動電圧 V (T3) から元の電圧に戻るまでの時間を 100 ms に設定する場合
 T4 100

#### レスポンスメッセージ

**T4**? に対して出力電圧が変動電圧 V(T3) から元の電圧に戻るまでの時間を返します。

(例) 出力電圧が変動電圧 V(T3)から元の電圧に戻るまでの時間が100 msの場合
 100 を返します。

出力電圧が元の電圧に復帰して次の電源ライン異常シミュレーションが開始する までの時間を設定します。あるいは次の電源ライン異常シミュレーションが開始す るまでの時間を問い合わせます。「図 9-1 パラメータ設定」を参照してください。 そのときの周波数に基づいて、本機が内部で時間に換算して復帰時間とします。し たがって、復帰時間の設定と実行結果の復帰時間の誤差は最大1サイクルとなりま す。

#### プログラムメッセージ

・構文

コマンドメッセージ: T5 <NR2> クエリメッセージ: T5?

・プログラムデータ

| )9 s |
|------|
|      |
|      |
|      |

単位: ms, s

(例) 電源ライン異常シミュレーションが開始するまでの時間を200 msに設定する場合
 T5 200

#### レスポンスメッセージ

T5? に対して電源ライン異常シミュレーションが開始するまでの時間を返します。

(例) 電源ライン異常シミュレーションが開始するまでの時間が 200 ms の場合 200 を返します。

T5

## 9.7.2 電源ライン異常シミュレーション・スタート/ストップ

## **INT/RUNNING?**

電源ライン異常シミュレーションを開始または終了します。あるいは電源ライン異 常シミュレーションを実行中かどうかを問い合わせます。

#### プログラムメッセージ

・構文

コマンドメッセージ: INT {ON | OFF | 1 | 0}

クエリメッセージ: INT?

RUNNING?

#### ・プログラムデータ

データ形式: キャラクタ/整数

| 設定值: OFF(0)   | 電源ライン異常シミュレーションの終了 |
|---------------|--------------------|
| <b>ON</b> (1) | 電源ライン異常シミュレーションの開始 |

(例) 電源ライン異常シミュレーションを開始する場合 INT 1 INT ON

#### レスポンスメッセージ

INT? または RUNNING? に対して電源ライン異常シミュレーションを実行中かどう かを返します。

(例) 電源ライン異常シミュレーションが実行中の場合
 PCR-LA モードでは 1 を返します。
 PCR-L モードでは 001 を返します。

ン異常シミュレーションの記録をとるのに便利です。

 注記
 ・ 電源ライン異常シミュレーション実行中は、次のメッセージだけを受け付けます。

 クエリメッセージ

 電源ライン異常シミュレーションを止めるメッセージ

 SIMSTOP メッセージ、INT OFF メッセージ、INT 0 メッセージ

 ・ 本書の付録の「電源ライン異常シミュレーション設定表」を使うと、電源ライ

9 章

R

S

## SIMRUN

電源ライン異常シミュレーションを開始します。 コマンドメッセージ INT 1と同じです。

#### プログラムメッセージ

- ・構文
  - コマンドメッセージ: SIMRUN

### SIMSTOP

電源ライン異常シミュレーションを終了します。 コマンドメッセージ INT 0と同じです。

#### プログラムメッセージ

・構文

コマンドメッセージ: SIMSTOP

# 9.8 シーケンス動作メッセージ

出力電圧、周波数、時間設定などを組み合わせてシーケンス動作を指定すると、 PCR-LAの自動運転を行うことができます。動作説明は「8.15 シーケンス動作」を 参照してください。

| 注記 |   | シーケンス動作によっては、AC モードまたは DC モードで無視されるものがあ<br>ります。AC + DC モードでは、すべてのプログラムメッセージが有効です。 |
|----|---|-----------------------------------------------------------------------------------|
|    | • | シーケンス実行中は、次のメッセージだけを受け付けます。                                                       |
|    |   | クエリメッセージ                                                                          |
|    |   | シーケンスを止めるメッセージ                                                                    |
|    |   | SEQSTOP メッセージ、SEQPAUSE メッセージ                                                      |
|    |   |                                                                                   |

## 波形バンクを使用する場合

波形は1サイクル終了後に切り替わります。

シーケンス動作時には、電圧と周波数は指定した時間で即時に変化しますが、波形 バンクは波形アドレス 1023 を通過するまで変化しません。電圧と波形バンクを同 時に変更する場合には、アドレスの切り替わり後1サイクル終了するまでの時間+1 ms 以上、出力の調整が必要です。波形アドレスについては、「9.9 特殊波形メッセー ジ |の WAVE メッセージを参照してください。

電圧と波形バンクを同時に変更した場合の、出力波形の例を図 9-2 に示します。



図 9-2 電圧と波形バンクの切り替わるタイミングの例

電圧が切り替わるタイミングと波形バンクが切り替わるタイミングが違うので、ア ドレス2に切り替わった後に、アドレス1の波形がアドレス2の電圧で1サイクル 弱出力されます。この出力を防ぐために、アドレス1とアドレス2の間にアドレス が切り替わってから1サイクル終了する時間+1ms間、波形2を0Vの電圧などで 挿入します。



出力を調整すると、予想外の波形の出力を防ぐことができます。

第

9 章

R

## SEDIT

シーケンスのデータを設定します。あるいはシーケンスのデータを問い合わせま す。

コマンドメッセージを複数設定するとき、シーケンスのアドレスを省略するとアド レスは自動的に増加します。シーケンスのアドレス以外のデータを省略した場合 は、それまで設定していたデータまたは直前に設定したデータが有効になります。

#### プログラムメッセージ

- ・構文
  - コマンドメッセージ: SEDIT <シーケンスのアドレス NR1,周波数の変化方法</li>
     法 {ON|OFF|1|0},周波数 NR2,交流電圧の変化方法
     {ON|OFF|1|0},交流電圧 NR2,時間 NR1,分 NR1,秒
     NR1,波形バンク NR1,出力インピーダンス NR2,直流電
     圧 NR2,ステータス信号 {ON|OFF|1|0},トリガ信号
     {ON|OFF|1|0},出力 {ON|OFF|1|0} >
  - クエリメッセージ: SEDIT <シーケンスのアドレス NR1 >?
- ・プログラムデータ <シーケンスのアドレス NR1 >
  - 設定值: 1~99
  - 分解能:1
- ・プログラムデータ 周波数の変化方法 {ON|OFF|1|0}、交流電圧の変化方法 {ON|OFF|1|0}
  - アドレス0はランプONの指定はできません。また、スタートアドレスでのラ ンプONの指定は無視されます。
  - データ形式: キャラクタ/整数
  - 設定値: ON(1) ランプ(直線) OFF(0) ステップ
- ・プログラムデータ <周波数 NR2 >
  - 設定值: 1.00~999.9
  - 分解能: 1.00~99.99:0.01
    - $100.0 \sim 999.9$ : 0.1
  - 単位: Hz
- ・プログラムデータ <交流電圧 NR2 >
  - 設定値: 0.0 ~ 152.5 出力 100 V レンジ 0.0 ~ 305.0 出力 200 V レンジ
  - 分解能: 0.1
  - 単位: V

・プログラムデータ <時間 NR1 > 設定値:0~999 分解能:1 単位: hour
・プログラムデータ <分 NR1 > 設定値:0~999 分解能:1 単位: min
・プログラムデータ <秒 NR1 > 設定値:0.001~999.999
分解能:0.001

単位: s

・プログラムデータ <波形バンク NR1>

波形バンクは、WAVEBANK メッセージと同様に設定してください。また、波形 バンクの内容は、あらかじめ WAVEPC メッセージにより設定しておいてくだ さい。

- 設定値:0~14 0は読み出し専用
- 分解能:1
- ・プログラムデータ <出力インピーダンス NR2 >

出力インピーダンスは OUTZ メッセージと同様に設定してください。

設定値と分解能:

|           | 設定範囲(Ω)            |                    | 分解能(Ω)    |           |
|-----------|--------------------|--------------------|-----------|-----------|
|           | 100 V レンジ          | 200 V レンジ          | 100 V レンジ | 200 V レンジ |
| PCR500LA  | $0.0 \sim 4.0$     | $0.0 \sim 16.0$    | 40 m      | 160 m     |
| PCR1000LA | $0.0\sim 2.0$      | $0.0 \sim 8.0$     | 20 m      | 80 m      |
| PCR2000LA | $0.0 \sim 1.0$     | $0.0 \sim 4.0$     | 10 m      | 40 m      |
| PCR4000LA | $0.0\sim 0.5$      | $0.0\sim 2.0$      | 5 m       | 20 m      |
| PCR6000LA | $0.000 \sim 0.333$ | $0.000 \sim 1.333$ | 3.33 m    | 13.33 m   |

単位: Ω

・プログラムデータ <直流電圧 NR2 >

設定値: 0.0 ~ 215.5 出力 100 V レンジ 0.0 ~ 431.0 出力 200 V レンジ 分解能: 0.1

単位: V

・プログラムデータ ステータス信号 {ON | OFF | 1 | 0 }

データ形式: キャラクタ/整数

設定値: OFF(0) BNC コネクタ "SEQ STAT OUT" に信号を出さない

- ON(1) BNC コネクタ "SEQ STAT OUT" に信号を出す
- ・プログラムデータ トリガ信号 {ON | OFF | 1 | 0 }

データ形式: キャラクタ/整数

設定値: OFF(0) BNC コネクタ "SEQ TRIG OUT" に信号を出さない ON(1) BNC コネクタ "SEQ TRIG OUT" に信号を出す

・プログラムデータ 出力 {ON | OFF | 1 | 0}

データ形式: キャラクタ/整数

設定値: OFF(0) 出力オフ ON(1) 出力オン

 (例) アドレス1を周波数ランプ ON、周波数 56.78 Hz、電圧ランプ OFF、出力 電圧(ACモード)123.4 V、時間0h0m10.123 sec、波形バンク0、出力イ ンピーダンス0、DC電圧10.0 V、ステータス OFF、トリガ OFF、出力 ON にする場合
 SEDIT 1,1,56.78,0,123.4,0,0,10.123,0,0,10.0,0,0,1

レスポンスメッセージ

(例) アドレス1のシーケンスデータが周波数ランプON、周波数56.78 Hz、電圧
 ランプOFF、出力電圧(ACモード)123.4 V、時間0h0m10.123 sec、波形
 バンク0、出力インピーダンス0、DC電圧10.0 V、ステータスOFF、トリガOFF、出力ONの場合、SEDIT\_1? に対して

1,56.78,0,123.4,0,0,10.123,0,0,10.0,0,0,1を返します。

注記 · 付録の「シーケンス動作設定表」を使うと、シーケンス動作の設定や記録をと るのに便利です。

第 9 章

## SEQEND

シーケンスエンドアドレスを設定します。あるいはシーケンスエンドアドレスの設 定を読み出します。

#### プログラムメッセージ

コマンドメッセージ: SEQEND <NR1>

クエリメッセージ: SEQEND?

- ・プログラムデータ
  - 設定值:1~98
  - 分解能:1
  - (例) シーケンスエンドアドレスを3に設定する場合SEQEND 3

#### レスポンスメッセージ

SEQEND? に対してシーケンスエンドアドレスの設定を読み出します。

(例) シーケンスエンドアドレスが3の場合 3を返します。

## SEQLOOP

ループ回数を設定します。あるいはループ回数の設定を問い合わせます。

#### プログラムメッセージ

コマンドメッセージ: SEQLOOP <NR1>

クエリメッセージ: SEQLOOP?

・プログラムデータ

設定值: 1~99999

分解能:1

(例) ループ回数を3に設定する場合SEQLOOP 3

#### レスポンスメッセージ

SEQLOOP? に対してループ回数を返します。

(例) 現在のループ回数が 20 の場合20 を返します。

## SEQPAUSE

シーケンスを一時停止します。

#### プログラムメッセージ

コマンドメッセージ: SEQPAUSE {ON|OFF|1|0}

クエリメッセージ: SEQPAUSE?

#### ・プログラムデータ

データ形式: キャラクタ/整数

- 設定値: OFF(0) シーケンス再スタート ON(1) シーケンス一時停止
- (例) シーケンスを再スタートする場合SEQPAUSE 0SEQPAUSE OFF

#### レスポンスメッセージ

SEQPAUSE? に対してシーケンス中かどうかを返します。

(例) シーケンスが一時停止中の場合
 PCR-LA モードでは 1 を返します。
 PCR-L モードでは 001 を返します。

## SEQRUN

シーケンスを開始します。

#### プログラムメッセージ

コマンドメッセージ: SEQRUN

## 第 9 章

## SEQSTART

シーケンススタートアドレスを設定します。あるいはシーケンススタートアドレス の設定を読み出します。

#### プログラムメッセージ

コマンドメッセージ: SEQSTART <NR1>

クエリメッセージ: SEQSTART?

- ・プログラムデータ
  - 設定值:1~98
  - 分解能:1
  - (例) シーケンススタートアドレスを3に設定する場合SEQSTART 3

#### レスポンスメッセージ

SEQSTART? に対してシーケンススタートアドレスの設定を読み出します。

(例) シーケンススタートアドレスが3の場合 3を返します。

## SEQSTOP

シーケンスを終了します。

プログラムメッセージ

コマンドメッセージ: SEQSTOP

# 9.9 特殊波形メッセージ

特殊波形メッセージを使用すると、サイン波形以外の波形を出力できます。 標準で出力可能な特殊波形は、サイン波形のピークがつぶれた「ピーククリップ波 形」です。また、波形データを本機に転送することにより、「ユーザ定義波形」を 出力することもできます。

特殊波形を出力するには、波形バンクにあらかじめ特殊波形を設定しておき、その 後に波形バンクを切り替えます。本機には 15 個の波形バンク(バンク0~14)が あります。バンク0は基準のサイン波形専用のバンクで、内容を書き換えることは できません。バンク1~14は、内容を自由に書き換えることができます。

波形は 1 サイクル終了後に切り替わります。切り替わりの詳細については、9-55 ページの「波形バンクを使用する場合」を参照してください。

### WAVE

波形バンクに直接データを書き込みます。あるいは波形バンクのデータを問い合わ せます。

波形バンクに波形を直接書き込みするには、1 サイクル(位相角の 360 deg)を 1024 で割った波形アドレスに波形データを設定します。

イニシャルセットアップ状態では、すべての波形バンクに正弦波が入っています。 波形データを設定した波形アドレスの部分だけが変更になります。

例えば、波形バンクに方形波を書き込む場合には、波形アドレス0から511 まで波 形データ 4095 を設定して、波形アドレス513 から1022 まで波形データ0 を設定し ます。波形アドレス 512 と 1023 には波形データ 2048 を設定します。図 9-4 の方形 波が書き込まれます。



複数のコマンドメッセージを設定するときには、プログラムデータを省略できま す。波形アドレスを省略すると、アドレスは自動的に増加します。波形バンクと波 形データを省略すると、直前の設定値が適用されます。

#### プログラムメッセージ

コマンドメッセージ: WAVE <波形バンク NR1,波形アドレス NR1,波形 データ NR1 >

コマンドメッセージ: WAVE <波形バンクNR1,波形データNR1>?

・プログラムデータ <波形バンク NR1 >

設定値: 0~14 0は読み出し専用

分解能:1

・プログラムデータ <波形アドレス NR1>

設定値: 0~1023 0は位相角の0deg、512は位相角の180deg

分解能:1

単位: deg

・プログラムデータ <波形データ NR1 >

設定値: 0~4095 2048 は波形のセンター 0 はマイナスのピーク 4095 は+のピーク

分解能:1

(例) 波形バンク 10、波形アドレス 100 の波形データを 2048 にする場合WAVE 10,100,2048

#### レスポンスメッセージ

WAVE <波形バンク NR1,波形アドレス NR1 >?に対して波形データを返します。

(例) 波形バンク 1、波形アドレス 10の波形データが 100の場合、WAVE 1,10?
 に対して
 100を返します。

### WAVEBANK

使いたい波形バンクを選択します。あるいは波形バンクを問い合わせます。波形バンクの内容は「8.18 特殊波形出力」を参照してください。

#### プログラムメッセージ

- コマンドメッセージ: WAVEBANK <NR1>
- クエリメッセージ: WAVEBANK?
- ・プログラムデータ

設定値: 0~14 0は SIN 波専用

分解能:1

(例) 波形バンク 10を使う場合 WAVEBANK 10

#### レスポンスメッセージ

WAVEBANK? に対して現在の波形バンクを返します。

(例) 波形バンクが 10 の場合 10 を返します。

## WAVEPC

ピーククリップ波形を設定します。あるいはピーククリップ波形を問い合わせま す。出力が オフ のときだけ有効です。

#### プログラムメッセージ

コマンドメッセージ: WAVEPC <波形バンクNR1, ピーククリップ波形のク レストファクタNR2 >

クエリメッセージ: WAVEPC <波形バンクNR1 >?

・プログラムデータ <波形バンクNR1 >

設定値: 0~14 0は SIN 波専用

分解能:1

・プログラムデータ <ピーククリップ波形のクレストファクタ NR2 >

設定值: 1.10~1.41

1.41 を設定したときは SIN 波となります。

分解能: 0.01

(例) 波形バンク 3 のピーククリップ波形のクレストファクタを 1.2 に設定する
 場合
 WAVEPC 3,1.2

レスポンスメッセージ

WAVEPC <波形バンク NR1 >?に対してピーククリップ波形のクレストファクタ を返します。

- (例) 波形バンク 2 のピーククリップ波形のクレストファクタが 1.23 の場合、
   WAVEPC 2? に対して
   1.23 を返します。
- (例) 波形バンク 3 のピーククリップ波形のクレストファクタが SIN 波の場合、
   WAVEPC 3? に対して
   1.41 を返します。

# 9.10 電流計測値のゼロ校正機能メッセージ(並列 運転時)

オプションの PD03M-PCR-LA または PD03S-PCR-LA を使用して初めてワンコント ロール並列運転を行った場合、電流計測に関係する 電流、電力、力率、皮相電力表 示、および高調波電流解析値 にオフセットを生じる (無負荷時にわずかに値が表 示される)ことがあります。

この場合、下記のメッセージを使用してゼロ校正を行うことができます。

## CALPARA

必ず PD03M/S-PCR-LA の取扱説明書も合わせてお読みください

CALPARA メッセージでゼロ校正を行います。

ゼロ校正が終了するまで数 10 秒間は他のメッセージは受け付けません。この校正 値は PCR-LA 内部に記憶されていますが、周囲温度の変化等に応じて再校正を行っ てください。

プログラムメッセージ

・構文

コマンドメッセージ: CALPARA

# 9.11 レジスタについて

本機は、外部よりアクセス可能な 10 個の内部レジスタを持っています。各レジス タは8ビット構成で、読み出したときのデータは10進数(0~255)が返ります。 各内部レジスタの概要は「図9-5 内部レジスタ」(9-66ページ)のとおりです。



## ステータスバイトレジスタ

|   | ビット | 内容                                                          |
|---|-----|-------------------------------------------------------------|
| 7 |     | 未使用                                                         |
| 6 | RQS | サービスリクエストを発生させた証拠で、シリアルポールに<br>よって読み出されることにより、リセットされます。     |
| 0 | MSS | ステータスバイトレジスタとサービスリクエストイネーブル<br>レジスタの論理和で、*STB によって読み出されます。  |
| 5 |     | 未使用                                                         |
| 4 | DSB | デバイスステータスレジスタの値をデバイスステータスイ<br>ネーブルレジスタでマスクした値 <sup>*1</sup> |
| 3 | ERR | シンタックスエラーなどが発生したことを表します。                                    |
| 2 | SE  | シーケンス終了時に約1秒間 "1" になります。                                    |
| 1 |     | 未使用                                                         |
| 0 | FAU | フォルトレジスタの値をフォルトアンマスクレジスタでマス<br>クした値                         |

\*1. このビットは PCR-L モードではマスクされます。

## アンマスクレジスタ(サービスリクエストイネーブルレジスタ) (初期値 #H0)

|   | ビット | 内容                                                        |
|---|-----|-----------------------------------------------------------|
| 7 |     | 未使用                                                       |
| 6 |     | 未使用                                                       |
| 5 |     | 未使用                                                       |
| 4 | DSB | DSB が発生したとき、サービスリクエストの発生を許可する<br>ことを表します。                 |
| 3 | ERR | メッセージエラーが発生したとき、サービスリクエストの発<br>生を許可することを表します。             |
| 2 | SE  | シーケンスが終了したとき、サービスリクエストの発生を許<br>可することを表します。                |
| 1 |     | 未使用                                                       |
| 0 | FAU | フォルトレジスタ内のいずれかのビットが "1" のとき、サー<br>ビスリクエストの発生を許可することを表します。 |

## フォルトレジスタ、フォルトアンマスクレジスタ (初期値 #HFC)、ステー タスレジスタ

ステータスレジスタのいずれかのビットが0から1へ変化した場合に、それに対応 したフォルトレジスタのビットが1になります(対応するフォルトアンマスクレジ スタのビットがセットされている場合のみ)。

フォルトレジスタは、内容を FAU? メッセージで読み出すことにより、リセットさ れます。

フォルトレジスタのいずれかのビットが0から1へ変化した場合に、ステータスバ イトレジスタの FAU ビットが1になります。

|   | ビット | 内容                                      |
|---|-----|-----------------------------------------|
| 7 | ALM | その他のアラームが発生したことを表します。                   |
| 6 | OLP | 電流リミットが作動したことを表します。                     |
| 5 | ASO | 内部半導体保護回路が作動したことを表します。                  |
| 4 | HER | 本機のハードウェアエラーが発生したことを表します。               |
| 3 | INT | 電源ライン異常シミュレーションが終了時に約1秒間 "1" に<br>なります。 |
| 2 | DAV | 計測値が更新されたことを表します。                       |
| 1 |     | 未使用                                     |
| 0 |     | 未使用                                     |

## モードレジスタ

|   | ビット  | 内容                                                            |
|---|------|---------------------------------------------------------------|
| 7 |      | 未使用                                                           |
| 6 | FHA  | 出力オン、オフ 位相を設定していることを表します。                                     |
| 5 | WAV  | 波形を切り替えていることを表します。                                            |
| 4 | OUTZ | 出力インピーダンスを設定していることを表します。                                      |
| 3 | ACS  | AC-S モード                                                      |
| 2 | RNG  | 出力電圧レンジ:200 V レンジ(1)/100 V レンジ(0)                             |
| 1 | ACDC | AC+DC モード                                                     |
| 0 | DC   | $DC \not = - \not \models (1) / AC \not = - \not \models (0)$ |

デバイスステータスレジスタ、デバイスステータスイネーブルレジス タ(初期値 #H0F)

|   | ビット | 内容                     |
|---|-----|------------------------|
| 7 |     | 未使用                    |
| 6 |     | 未使用                    |
| 5 |     | 未使用                    |
| 4 |     | 未使用                    |
| 3 | OUT | 出力がオンしていることを表します。      |
| 2 | DAV | 計測値が更新されたことを表します。      |
| 1 | SEQ | シーケンス動作中です。            |
| 0 | SIM | 電源ライン異常シミュレーションが動作中です。 |

## オプションカードレジスタ

| ビット |      | 内容           |
|-----|------|--------------|
| 7   |      | 未使用          |
| 6   |      | 未使用          |
| 5   |      | 未使用          |
| 4   | AMPL | 外部アナログコントロール |
| 3   | PARA | 並列運転         |
| 2   | 2P   | 単相三線         |
| 1   | 3P   | 三相           |
| 0   | GPIB | GPIB         |

## エラーレジスタ

|   | ビット | 内容                                             |
|---|-----|------------------------------------------------|
| 7 |     | PCR-L モードでは、データエラーまたは無効なメッセージを<br>検出した場合を表します。 |
| 6 |     | 未使用                                            |
| 5 |     | 未使用                                            |
| 4 |     | 未使用                                            |
| 3 | INV | 無効なメッセージ(PCR-L モードでは未使用)                       |
| 2 | DER | データエラー (PCR-L モードでは未使用)                        |
| 1 | ORE | 範囲外エラーを表します。(OUT OF RANGE ERROR)               |
| 0 | SER | シンタックスエラー(SYNTAX ERROR)                        |

# 9.12 メッセージー覧表

W/R は、コマンドメッセージ(W)とクエリメッセージ(R)を表します。

## 機能欄の「2P/3P,Sync,AC/AC-S,…,Alarm」は表末尾で説明します。

|    | ヘッダ         | プログラムデータ |     |        |     |   | 機能    |                                  |     | S   |     |    |    | ч   | de  | ч   | _    |     |     |
|----|-------------|----------|-----|--------|-----|---|-------|----------------------------------|-----|-----|-----|----|----|-----|-----|-----|------|-----|-----|
|    |             | W/R      | Min | Max    | 分解  | 単 | 補足    |                                  | 3P  | Ŋ   | /AC |    | DC | Ou  | Ru  | Mo  | n Ru | l   | E   |
|    |             |          |     |        | 能   | 位 |       |                                  | 2P/ | Syr | AC  | DC | AC | Oui | Sec | Sin | Sin  | Ŧ   | Ala |
| 1  | *CLS        | W        |     |        |     |   |       | レジスタのクリア                         |     |     |     |    |    |     |     |     |      |     |     |
| 2  | *IDN?       | R        |     |        |     |   |       | KIKUSUI ELECTRONICS              |     |     |     |    |    |     |     |     |      |     |     |
|    |             |          |     |        |     |   |       | CORP.,PCR-xxxxLA,0,x.xx          |     |     |     |    |    |     |     |     |      |     | *1  |
| 3  | *RST        | w        |     |        |     |   |       | メモリ、シークシス、アラ                     |     |     |     |    |    |     |     |     |      |     | 1   |
|    |             |          |     |        |     |   |       | く各設定値を工場出荷時の                     |     |     |     |    |    |     |     |     |      |     |     |
|    |             |          |     |        |     |   |       | 設定にする (SETINI と同                 |     |     |     |    |    |     |     |     |      |     |     |
|    | *67709      | D        |     |        |     |   |       | レーマスバイトレジスター                     |     |     |     |    |    |     |     |     |      |     | -   |
| 4  | "SID?       | к        |     |        |     |   |       | の値を返す。PCR-Lモード                   |     |     |     |    |    |     |     |     |      |     |     |
|    |             |          |     |        |     |   |       | では bit4 をマスクする。                  |     |     |     |    |    |     |     |     |      |     |     |
| 5  | ACDC        | W        | 0   | 3      | 1   |   |       | 出力電圧モード 0:AC, 1:DC,              | *1  | *1  |     |    |    | *1  | *1  | *1  | *1   | *1  | *1  |
| 6  |             | D        |     |        |     |   |       | 2:AC+DC, 5:AC5<br>出力電圧チード (0123) |     |     |     |    |    |     |     |     |      |     | -   |
|    | ACDC:       | К        |     |        |     |   |       | を返す。PCR-Lモードでは                   |     |     |     |    |    |     |     |     |      |     |     |
|    |             |          |     |        |     |   |       | (000,001,002,003) を返す。           |     |     |     |    |    |     |     |     |      |     |     |
| 7  | ACILIM      | W        | *   | *      | *   |   |       | 交流電流リミット値の設定                     | *1  |     |     |    |    |     |     | *1  | *1   | *1  | *1  |
|    |             |          |     |        |     |   |       | なる                               |     |     |     |    |    |     |     |     |      |     |     |
| 8  | ACILIM?     | R        |     |        |     |   |       | 交流電流リミット値を返す                     |     |     |     |    |    |     |     |     |      |     |     |
| 9  | ACVHI       | W        | 0   | 305.0  | 0.1 |   | ACVL  | 交流電圧のハイリミット値                     |     |     |     |    |    |     | *1  | *1  | *1   | *1  | *1  |
|    |             |          |     |        |     |   | 0 設定  | の設定                              |     |     |     |    |    |     |     |     |      |     |     |
| 10 | ACVHI?      | P        |     |        |     |   | 但起    | 交流電圧のハイリミット値                     |     |     |     |    |    |     | -   |     |      |     | -   |
| 10 | AC VIII.    | K        |     |        |     |   |       | を返す                              |     |     |     |    |    |     |     |     |      |     |     |
| 11 | ACVLO       | W        | 0   | 305.0  | 0.1 |   | ACVHI | 交流電圧のローリミット値                     |     |     |     |    |    |     | *1  | *1  | *1   | *1  | *1  |
|    |             |          |     |        |     |   | 設定値   | の<br>設定                          |     |     |     |    |    |     |     |     |      |     |     |
| 12 | ACVLO?      | R        |     |        |     |   |       | 交流電圧のローリミット値                     |     |     |     |    |    |     |     |     |      |     |     |
|    |             |          |     |        |     |   |       | を返す                              |     |     |     |    |    |     |     |     |      |     |     |
| 13 | ACVSET      | W        | 0   | 152.5/ | 0.1 |   |       | 交流電圧値の設定                         |     |     |     | *1 |    | *2  | *1  |     | *1   |     | *1  |
|    |             |          |     | 305.0  |     |   |       |                                  |     |     |     |    |    |     |     |     |      |     |     |
| 14 | ACVSET?     | R        |     |        |     |   |       | 交流電圧値を返す                         |     |     |     |    |    |     |     |     |      |     |     |
| 15 | ALMCLR      | W        |     |        |     |   |       | アラームをクリア                         |     |     |     |    |    |     |     |     |      |     | *2  |
| 16 | CALPARA     | W        |     |        |     |   |       | 電流計測のセロ校止                        |     |     |     |    |    |     |     |     |      |     |     |
| 17 | CLR         | W        |     |        |     |   |       | エラーレジスタをクリア                      |     |     |     |    |    |     |     |     |      |     | *1  |
| 18 | CLRMEMORY   | W        |     |        |     |   |       | 全(のメモリデータをクリ<br> ア               |     |     |     |    |    |     |     | *1  | *1   | *1  | *1  |
| 19 | CURHARMA N? | R        | 1   | 40     | 1   |   |       | N次高調波データを返す                      |     |     |     |    |    |     |     |     |      | *3  |     |
| 20 | CURHARMP N? | R        | 1   | 40     | 1   |   |       | N次高調波データを 100 分                  |     |     |     |    |    |     |     |     |      | *3  |     |
|    |             |          |     |        |     |   |       | 率で返す                             |     |     |     |    |    |     |     |     |      |     |     |
| 21 | CURHARMA    | R        |     |        |     |   |       | 奇数次高調波データを","で                   |     |     |     |    |    |     |     |     |      | *3  |     |
|    | ODD?        |          |     |        |     |   |       | レックし返り                           |     |     |     |    |    |     |     |     |      |     |     |
| 22 | CURHARMP    | R        |     |        |     |   |       |                                  |     |     |     |    |    |     |     |     |      | *3  |     |
|    |             | P        |     |        |     |   |       |                                  | -   |     |     |    |    |     |     |     |      | *2  | -   |
| 23 | CUKHAKMA    | к        |     |        |     |   |       | 区切って返す                           |     |     |     |    |    |     |     |     |      | - 3 |     |
|    |             |          |     |        |     |   |       |                                  |     |     |     |    |    |     |     |     |      |     |     |
|    | ヘッダ               |     | プ                 | ログラム            | データ          | 7      |                    | 機能                                                                                                                     |       |      | S      |    |      |        |         | e      |         |        |       |
|----|-------------------|-----|-------------------|-----------------|--------------|--------|--------------------|------------------------------------------------------------------------------------------------------------------------|-------|------|--------|----|------|--------|---------|--------|---------|--------|-------|
|    |                   | W/R | Min               | Max             | 分解<br>能      | 単<br>位 | 補足                 |                                                                                                                        | 2P/3P | Sync | AC/AC- | DC | ACDC | Out On | Seq Run | SimMod | Sim Run | FFT On | Alarm |
| 24 | CURHARMP<br>EVEN? | R   |                   |                 |              |        |                    | 偶数次高調波データを","で<br>区切って返す(100分率)                                                                                        |       |      |        |    |      |        |         |        |         | *3     | _     |
| 25 | CURHARMA<br>LOW?  | R   |                   |                 |              |        |                    | 1~20 次の高調波データを<br>","で区切って返す                                                                                           |       |      |        |    |      |        |         |        |         | *3     |       |
| 26 | CURHARMP<br>LOW?  | R   |                   |                 |              |        |                    | 1 <sup>-</sup> 20次の高調波データを<br>","で区切って返す(100分<br>率)                                                                    |       |      |        |    |      |        |         |        |         | *3     |       |
| 27 | CURHARMA<br>HIGH? | R   |                   |                 |              |        |                    | 21~40次の高調波データを<br>","で区切って返す                                                                                           |       |      |        |    |      |        |         |        |         | *3     |       |
| 28 | CURHARMP<br>HIGH? | R   |                   |                 |              |        |                    | 21~40次の高調波データを<br>","で区切って返す(100分<br>率)                                                                                |       |      |        |    |      |        |         |        |         | *3     |       |
| 29 | DCILIM            | W   | *                 | *               | *            |        |                    | 直流電流リミット値の設定<br>※機種、レンジによって異<br>なる                                                                                     | *1    |      |        |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 30 | DCILIM?           | R   |                   |                 |              |        |                    | 直流電流リミット値を返す                                                                                                           |       |      |        |    |      |        |         |        |         |        |       |
| 31 | DCVHI             | W   | -431.0            | 431.0           | 0.1          |        | DCVL<br>O 設定<br>値超 | 直流電圧のハイリミット値<br>の設定                                                                                                    | *1    |      |        |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 32 | DCVHI?            | R   |                   |                 |              |        |                    | 直流電圧のハイリミット値<br>を返す                                                                                                    |       |      |        |    |      |        |         |        |         |        |       |
| 33 | DCVLO             | W   | -431.0            | 431.0           | 0.1          |        | DCVHI<br>設定値<br>未満 | 直流電圧のローリミット値<br>の設定                                                                                                    | *1    |      |        |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 34 | DCVLO?            | R   |                   |                 |              |        |                    | 直流電圧のローリミット値<br>を返す                                                                                                    |       |      |        |    |      |        |         |        |         |        |       |
| 35 | DCVSET            | W   | -215.5/<br>-431.0 | 215.5/<br>431.0 | 0.1          |        |                    | 直流電圧値の設定                                                                                                               | *1    |      | *1     |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 36 | DCVSET?           | R   |                   |                 |              |        |                    | 直流電圧値を返す                                                                                                               |       |      |        |    |      |        |         |        |         |        |       |
| 37 | DSE               | W   | 0                 | #HFF            |              |        |                    | デバイスステータスイネー<br>ブルレジスタのセット                                                                                             |       |      |        |    |      |        |         |        |         |        |       |
| 38 | DSE?              | R   |                   |                 |              |        |                    | デバイスステータスイネー<br>ブルレジスタのクリア                                                                                             |       |      |        |    |      |        |         |        |         |        |       |
| 39 | DSR?              | R   |                   |                 |              |        |                    | デバイスステータスレジス<br>タの値を返す                                                                                                 |       |      |        |    |      |        |         |        |         |        |       |
| 40 | ERR?              | R   |                   |                 |              |        |                    | エフーコードを返す                                                                                                              |       |      |        |    |      |        |         |        |         |        |       |
| 41 | FAU?              | R   | 0/055             | 1/01            |              |        |                    | ノオルトレンスタの値を必<br>す                                                                                                      |       |      |        |    |      |        | 1.1     | di d   |         |        |       |
| 42 | FFT               | W   | 0/OFF             | I/ON            |              |        |                    | 局調波電流 単析 モート に人る<br>言調波 雪波 解析 エードに                                                                                     |       | *1   |        | *1 | *1   |        | *1      | *1     | *1      |        | *1    |
| 43 | FF1?              | ĸ   |                   |                 |              |        |                    | 同詞 $\chi$ 電前 $\chi$ 電前 $\chi$ 電前 $\chi$ 電前 $\chi$ 電前 $\chi$ 電 (1)、いない<br>(0)を返す。PCR-L モード<br>では (001)または (000)<br>を返す。 |       |      |        |    |      |        |         |        |         |        |       |
| 44 | FFTHOLD           | W   | 0/OFF             | 1/ON            |              |        |                    | FFT 演算の一時停止 (ON)<br>と解除 (OFF)                                                                                          |       | *1   |        |    |      |        |         |        |         | *3     |       |
| 45 | FHI               | W   | 1.00              | 999.9           | 0.01/<br>0.1 |        | FLO 設<br>定値超       | 出力周波数のハイリミット<br>値を設定                                                                                                   |       |      |        |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 46 | FHI?              | R   |                   |                 |              |        |                    | 出力周波数のハイリミット<br>値を返す                                                                                                   |       |      |        |    |      |        |         |        |         |        |       |
| 47 | FLO               | W   | 1.00              | 999.9           | 0.01/<br>0.1 |        | FHI 設<br>定値未<br>満  | 出力周波数のローリミット<br>値を設定                                                                                                   |       |      |        |    |      |        | *1      | *1     | *1      | *1     | *1    |
| 48 | FLO?              | R   |                   |                 |              |        |                    | 出力周波数のローリミット<br>値を返す                                                                                                   |       |      |        |    |      |        |         |        |         |        |       |

|    | ヘッダ        |     | プ                 | ログラム            | データ     | 7      |           | 機能                                                                           |       |      | Š     |    |      |        | г       | de     | -      |        |       |
|----|------------|-----|-------------------|-----------------|---------|--------|-----------|------------------------------------------------------------------------------|-------|------|-------|----|------|--------|---------|--------|--------|--------|-------|
|    |            | W/R | Min               | Max             | 分解<br>能 | 単<br>位 | 補足        |                                                                              | 2P/3P | Sync | AC/AC | DC | ACDC | Out On | Seq Rur | SimMod | Sim Ru | FFT On | Alarm |
| 49 | FSET       | W   | 1.00              | 999.9           | 0.01/   |        |           | 出力周波数を設定                                                                     |       | *1   |       | *1 |      |        | *1      |        | *1     |        | *1    |
| 50 | FSET?      | R   |                   |                 |         |        |           | 出力周波数を返す                                                                     |       |      |       |    |      |        |         |        |        |        | -     |
| 51 | FSTO       | W   | 0                 | 99              | 1       |        | メモリ<br>番号 | 設定されている周波数をメ<br>モリにストア                                                       | *3    |      |       |    |      |        |         |        |        |        |       |
| 52 | FSTO xx?   | R   | 0                 | 99              | 1       |        |           | 指定したメモリ番号の周波<br>数を返す。PCR-Lモードで<br>は、メモリ番号と周波数を<br>返す。                        |       |      |       |    |      |        |         |        |        |        |       |
| 53 | FUNMASK    | W   | 0                 | #HFF            |         |        |           | フォルトアンマスクレジス<br>タの値を設定                                                       |       |      |       |    |      |        |         |        |        |        |       |
| 54 | FUNMASK?   | R   |                   |                 |         |        |           | フォルトアンマスクレジス<br>タの値をクリア                                                      |       |      |       |    |      |        |         |        |        |        |       |
| 55 | HEAD       | W   | 0                 | 1               |         |        |           | ヘッダをつける / つけない                                                               |       |      |       |    |      |        |         |        |        |        |       |
| 56 | HEAD?      | R   |                   |                 |         |        |           | ヘッダをつける (1)、つけ<br>ない (0) を返す。PCR-L<br>モードでは (001) または<br>(000) を返す。          |       |      |       |    |      |        |         |        |        |        |       |
| 57 | HOME       | W   |                   |                 |         |        |           | ホームポジションに戻す                                                                  |       |      |       |    |      | *1     | *1      |        | *1     |        | *1    |
| 58 | IDN?       | R   |                   |                 |         |        |           | "PCRxxxxL VERx.xx KIKUS<br>UI"を返す                                            |       |      |       |    |      |        |         |        |        |        |       |
| 59 | IM?        | R   |                   |                 |         |        |           | 出力電流の測定モード(<br>IMRMS, IMPK, IMPKH,<br>IMAVE)を返す                              |       |      |       |    |      |        |         |        |        |        |       |
| 60 | IMAVE      | W   |                   |                 |         |        |           | 出力電流の測定モードを<br>Ave にする                                                       |       |      | *1    |    |      |        |         |        |        |        | *1    |
| 61 | IMPK       | W   |                   |                 |         |        |           | 出力電流の測定モードを<br>Peak にする                                                      |       |      |       |    |      |        |         |        |        |        | *1    |
| 62 | ІМРКН      | W   |                   |                 |         |        |           | 出力電流の測定モードを<br>Peak Hold にする                                                 |       |      |       |    |      |        |         |        |        |        | *1    |
| 63 | IMRMS      | W   |                   |                 |         |        |           | 出力電流の測定モードを<br>rms にする                                                       |       |      |       |    |      |        |         |        |        |        | *1    |
| 64 | INT        | W   | 0/OFF             | 1/ON            |         |        |           | 電源ライン異常シミュレー<br>ションの実行と停止<br>SIMSTOP/SIMRUN と同じ                              | *4    | *5   | *5    | *5 | *5   | *5     | *5      | *5     | *5     | *5     | *5    |
| 65 | INT?       | R   |                   |                 |         |        |           | 電源ライン異常シミュレー<br>ションの実行中(1)、停止<br>中(0)を返す。PCR-L<br>モードでは(001)または<br>(000)を返す。 |       |      |       |    |      |        |         |        |        |        |       |
| 66 | IOUT?      | R   |                   |                 |         |        |           | 出力電流の測定値を返す                                                                  |       |      |       |    |      |        |         |        |        |        |       |
| 67 | LOC        | W   |                   |                 |         |        |           | LOCALにする                                                                     |       |      |       |    |      | *1     |         |        |        |        |       |
| 68 | MEMSTO     | W   | 1                 | 99              | 1       |        | メモリ<br>番号 | メモリストア                                                                       | *4    |      |       |    |      |        | *1      | *1     | *1     |        | *1    |
|    |            |     | 0                 | 152.5/<br>305.0 | 0.1     |        | 交流<br>電圧  |                                                                              |       |      |       |    |      |        |         |        |        |        |       |
|    |            |     | 1.00              | 999.9           | 0.01/   |        | 周波数       |                                                                              |       |      |       |    |      |        |         |        |        |        |       |
|    |            |     | 0                 | 14              | 1       |        | バンク       |                                                                              |       |      |       |    |      |        |         |        |        |        |       |
|    |            |     | -215.5/<br>-431.0 | 215.5/<br>431.0 | 0.1     |        | 直流<br>電圧  |                                                                              |       |      |       |    |      |        |         |        |        |        |       |
| 69 | MEMSTO xx? | R   | 0                 | 99              | 1       |        | メモリ<br>番号 | 指定したメモリ番号の内容<br>を返す。PCR-Lモードで<br>は、メモリ番号とその内容<br>を返す。                        | *4    |      |       |    |      |        |         |        |        |        |       |

|     | ヘッダ             |        | プ     | ゜ログラム   | データ | 7   |              | 機能                               |      |     | Ņ    |    |     |       | F      | de    | u     |       |      |
|-----|-----------------|--------|-------|---------|-----|-----|--------------|----------------------------------|------|-----|------|----|-----|-------|--------|-------|-------|-------|------|
|     |                 | W/R    | Min   | Max     | 分解能 | 単位  | 補足           | -                                | P/3P | ync | C/AC | IJ | CDC | ut On | eq Rur | imMod | im Ru | FT On | larm |
| 70  | MOD?            | D      |       |         | нс  | 12. |              | モードレジスタの値を返す                     | 21   | S.  | A    | D  | A   | 0     | š      | ŝ     | Si    | E     | A    |
| 70  | N               | W      | 0     | 9999    | 1   |     | × 1          | 電源ライン異常シミュレー                     |      |     |      | *1 | *1  |       | *1     |       | *1    | *1    | *1   |
| ,,, |                 |        | Ŭ     | 99 990, | -   |     | × 10         | ションの復帰サイクル (T5                   |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       | 999900  |     |     | $\times$ 100 | をサイクルで表す)<br>                    |      |     |      |    |     |       |        |       |       |       |      |
| 72  | N?              | R      |       |         |     |     |              | 電源ライン異常シミュレー                     |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | ションの復帰サイクル(15)<br>をサイクルで表す)を返す   |      |     |      |    |     |       |        |       |       |       |      |
| 73  | OFFPHASE        | W      | 0     | 360     | 1   |     |              | 出力オフ位相の設定                        |      |     |      | *1 | *1  |       | *1     | *1    | *1    | *1    | *1   |
| 74  | OFFPHASE?       | R      |       |         |     |     |              | 出力オフ位相設定値を返す                     |      |     |      |    |     |       |        |       |       |       |      |
| 75  | ONPHASE         | W      | 0     | 360     | 1   |     |              | 出力オン位相の設定                        |      |     |      | *1 | *1  |       | *1     | *1    | *1    | *1    | *1   |
| 76  | ONPHASE?        | R      |       |         |     |     |              | 出力オン位相設定値を返す                     |      |     |      |    |     |       |        |       |       |       |      |
| 77  | OPT?            | R      |       |         |     |     |              | オプションカードレジスタ<br>の値を返す            |      |     |      |    |     |       |        |       |       |       |      |
| 78  | OUT             | W      | 0/OFF | 1/ON    |     |     |              | 出力 オン、オフの設定                      |      |     |      |    |     |       | *1     |       |       |       | *5   |
| 79  | OUT?            | R      |       |         |     |     |              | 出力 ON 状態(1)、OFF 状                |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | 懸(0)を返す。PCR-L<br>  モードでは(001)または |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | (000)を返す。                        |      |     |      |    |     |       |        |       |       |       |      |
| 80  | OUTZ            | W      | 0     | 16.000  | *   |     |              | 出力インピーダンスの抵抗                     |      |     |      | *1 | *1  |       | *1     | *1    | *1    | *1    | *1   |
|     |                 |        |       |         |     |     |              | 値による設定 ※筬種、レ<br> ンジによって異なる       |      |     |      |    |     |       |        |       |       |       |      |
| 81  | OUTZ?           | R      |       |         |     |     |              | 出力インピーダンスの抵抗                     |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | 値を返す                             |      |     |      |    |     |       |        |       |       |       |      |
| 82  | OUTZPER         | W      | 0     | 100     | 1   |     |              | 出力インビーダンスの % に<br>よる設定           |      |     |      | *1 | *1  |       | *1     | *1    | *1    | *1    | *1   |
| 83  | OUTZPER?        | R      |       |         |     |     |              | 出力インピーダンスの % を<br>返す             |      |     |      |    |     |       |        |       |       |       |      |
| 84  | PEAKINIT        | W      |       |         |     |     |              | ピークホールド値のクリア                     |      |     |      |    |     |       |        |       |       |       | *1   |
| 85  | PF?             | R      |       |         |     |     |              | 力率の測定値を返す                        |      |     |      |    |     |       |        |       |       |       |      |
| 86  | POL             | W      | 0/    | 1/      |     |     |              | 電圧変動開始極性の設定                      | *6   |     |      | *1 | *1  |       | *1     |       | *1    | *1    | *1   |
|     |                 |        | PLUS  | MINUS   |     |     |              | 一番日本も用払払供え、日本                    |      |     |      |    |     |       |        |       |       |       |      |
| 87  | POL?            | R      | 0/100 | 1/200   |     |     |              | 電圧変動用始極性を必9 電圧しいジの語空             |      |     |      |    |     | ¥1    | ¥1     | ¥1    | *1    | *1    | *1   |
| 88  | RANGE<br>RANGE? | W<br>D | 0/100 | 1/200   |     |     |              | 電圧レンジを返す                         |      |     |      |    |     | *1    | *1     | *1    | *1    | ~1    | *1   |
| 09  | KANGE?          | ĸ      |       |         |     |     |              | 电圧レンジェ及9<br>100 V レンジ (0)        |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | 200 V レンジ(1)                     |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | PCR-L セードでは (000) または (001) を返す。 |      |     |      |    |     |       |        |       |       |       |      |
| 90  | RPT             | W      | 0     | 9999    | 1   |     | 9999:        | 電源ライン異常シミュレー                     |      |     |      | *1 | *1  |       | *1     |       | *1    | *1    | *1   |
|     |                 |        |       |         |     |     | ~            | ションの繰り返し回数                       |      |     |      |    |     |       |        |       |       |       |      |
| 91  | RPT?            | R      |       |         |     |     |              |                                  |      |     |      |    |     |       |        |       |       |       |      |
| 92  | RUNNING?        | R      | 0     | 1       |     |     |              | 電源ライン異常シミュレー                     |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | ンヨン、またはシーケンス<br>  が実行中(1) 停止中(0) |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | を返す。                             |      |     |      |    |     |       |        |       |       |       |      |
|     |                 |        |       |         |     |     |              | PCR-Lモードでは(001)<br> または(000)を返す。 |      |     |      |    |     |       |        |       |       |       |      |

|     | ヘッダ       |     | ブ       | ログラム    | データ   | 7 |          | 機能                                |          |     | Ň    |            |    |      | c     | de  | u    |          |    |
|-----|-----------|-----|---------|---------|-------|---|----------|-----------------------------------|----------|-----|------|------------|----|------|-------|-----|------|----------|----|
|     |           | W/R | Min     | Max     | 分解    | 単 | 補足       |                                   | (3P      | g   | C/AC | <b>T</b> \ | DC | t On | q Rui | nMo | n Ru | T On     | m  |
|     |           |     |         |         | 能     | 位 |          |                                   | $2P_{i}$ | Syı | AC   | DQ         | AC | Ou   | Sec   | Sin | Sin  | FF       | ΡĨ |
| 93  | SEDIT     | W   | 0       | 99      | 1     |   | アドレ      | シーケンスデータの設定                       |          |     |      |            |    |      | *1    | *1  | *1   | *1       | *1 |
|     |           |     | 0/OFF   | 1/ON    |       |   | 「国油粉」    |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0/011   | 1/01    |       |   | 同仮奴      |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 1.00    | 999.9   | 0.01/ |   | 周波数      |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 1100    |         | 0.1   |   |          |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0/OFF   | 1/ON    |       |   | 電圧ラ      |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   | ンプ       |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 152.5/  | 0.1   |   | 交流       |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         | 305.0   |       |   | 電圧       |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 999     | 1     |   | 時        |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 999     | 1     |   | 分        |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0.001   | 999.999 | 0.001 |   | 秒        |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 14      | 1     |   | 波形バ      |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 16.000  | ~     |   | 27       | ※擽挿 しいぶにとって思                      |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0       | 16.000  | *     |   | OUTZ     | なる   なる                           |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | -215.5/ | 215.5/  | 0.1   |   | 直流       |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | -431.0  | 431.0   |       |   | 電圧       |                                   |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0/OFF   | 1/ON    |       |   | ステー      | ステータス:後面パネルの                      |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   | タス       | BNC コネクタ "STAT" に信<br>号を出す / 出さない |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0/OFF   | 1/ON    |       |   | トリガ      | トリガ:後面パネルの BNC                    |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   |          | コネクタ "TRIG" に信号を                  |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     | 0/OFE   | 1/ON    |       |   | 山力       | 山 9 / 山 こ な い<br>出力・オン オフ         | -        |     |      |            |    |      |       |     |      |          |    |
| 94  | SEDIT xx? | P   | 0/011   | 00      | 1     |   | アドレ      | シーケンスデータの設定を                      |          |     |      |            |    |      |       |     |      | $\vdash$ |    |
|     |           | K   |         |         |       |   | , 「L     | 返す                                |          |     |      |            |    |      |       |     |      |          |    |
| 95  | SELFTEST? | R   |         |         |       |   |          | セルフテストの結果を返す                      |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   |          | OK / ADRxx,NOx                    |          |     |      |            |    |      |       |     |      |          |    |
| 96  | SEQEND    | W   | 1       | 99      | 1     |   | アドレ      | シーケンス エンドアドレス<br>  の設会            |          |     |      |            |    |      | *1    | *1  | *1   | *1       | *1 |
| 07  | (FORNDA   | D   |         |         |       |   | <u>×</u> | の収定                               |          |     |      |            |    |      |       |     |      |          |    |
| 97  | SEQEND?   | к   |         |         |       |   |          | シークンスエントアトレス<br>を返す               |          |     |      |            |    |      |       |     |      |          |    |
| 98  | SEQLOOP   | W   | 0       | 999999  |       |   |          | シーケンス ループ回数の設                     |          |     |      |            |    |      | *1    | *1  | *1   | *1       | *1 |
|     | SEOLOOD3  | D   |         |         |       |   |          | 定                                 |          |     |      |            |    |      |       |     |      |          |    |
| 99  | SEQLOOP?  | к   |         |         |       |   |          | シークシスルーク回数を返                      |          |     |      |            |    |      |       |     |      |          |    |
| 100 | SEQPAUSE  | W   | 0       | 1       |       |   |          | シーケンスを一時停止する                      |          |     |      |            |    |      |       | *1  | *1   | *1       | *1 |
|     |           |     |         |         |       |   |          | 1:PAUSE, 0:RE-START               |          |     |      |            |    |      |       |     |      |          |    |
| 101 | SEQPAUSE? | R   |         |         |       |   |          | シーケンスの実行中(0)、<br> 一時停止中(1)を返す     |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   |          | PCR-L モードでは (000)                 |          |     |      |            |    |      |       |     |      |          |    |
|     |           |     |         |         |       |   |          | または(001)を返す。                      |          |     |      |            |    |      |       |     |      |          |    |
| 102 | SEQRUN    | W   |         |         |       |   |          | シーケンスの開始                          |          |     |      |            |    |      | *1    | *1  | *1   | *1       | *1 |
| 103 | SEQSTART  | W   | 0       | 98      | 1     |   | アドレ      | シーケンス スタートアドレ<br>  スの弥空           |          |     |      |            |    |      | *1    | *1  | *1   | *1       | *1 |
|     |           |     |         |         |       |   | ス        | ハツ収止                              |          |     |      |            |    |      |       |     |      |          |    |
| 104 | SEQSTART? | R   |         |         |       |   |          | ンーケンス スタートアドレ<br>  スを返す           |          |     |      |            |    |      |       |     |      |          |    |
| 105 | SEQSTOP   | W   |         |         |       |   |          | シーケンスの終了                          |          |     |      |            |    |      |       | *1  | *1   | *1       | *1 |

|     | ヘッダ        |     | プ     | ログラム        | データ  | 7  |             | 機能                                            |     |      | S    |    |     |     |     | e   |     |    |      |
|-----|------------|-----|-------|-------------|------|----|-------------|-----------------------------------------------|-----|------|------|----|-----|-----|-----|-----|-----|----|------|
|     |            | W/R | Min   | Max         | 分解   | 単  | 補足          |                                               | Ч   |      | AC-  |    | Ŋ   | On  | Run | Mod | Run | ð  | Ξ    |
|     |            | ,   |       |             | 能    | 位  |             |                                               | P/3 | Sync | AC/. | ЭС | ACL | Dut | Seq | Sim | Sim | FT | Alar |
| 106 | SETINI     | w   |       |             |      |    |             | メモリ、シーケンス、ア                                   |     |      | /    | I  | 1   |     | •1  | •1  | •1  |    | *1   |
| 100 | SETIN      |     |       |             |      |    |             | ラーム、ユーザ定義波形を                                  |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | 除く各設定値を工場出荷時                                  |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | の設定にする (*RST と同<br>  ))                       |     |      |      |    |     |     |     |     |     |    |      |
| 107 | SII ENT    | w   | 0/OFE | 1/ON        |      |    |             | RS-232C DOK/ERROR                             |     |      |      |    |     |     |     |     |     |    |      |
| 107 | SILENI     | w   | 0/0FF | 1/ON        |      |    |             | ていたい。<br>電源ライン異合シミュレー                         |     | *1   |      | *1 | *1  | *1  | *1  |     |     | *1 | *1   |
| 108 | SIMMODE    | w   | 0/OFF | I/ON        |      |    |             | 電源ノイン共市シミュレ<br>ションモードの ON/OFF                 |     | *1   |      | ~1 | ~1  | *1  | .1  |     |     | *1 | *1   |
| 109 | SIMMODE?   | R   |       |             |      |    |             | 電源ライン異常シミュレー                                  |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | ションモードに入っている                                  |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | (1)、いない(0)を返す。                                |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | PCR-L モート C(4 (001))<br>または (000) を返す。        |     |      |      |    |     |     |     |     |     |    |      |
| 110 | SIMRUN     | w   |       |             |      |    |             | 電源ライン異常シミュレー                                  |     |      |      |    |     | *3  | *1  |     |     | *1 | *1   |
|     | Shiviltert |     |       |             |      |    |             | ションの実行 INT1と同じ                                |     |      |      |    |     |     | -   |     |     |    |      |
| 111 | SIMSTOP    | W   |       |             |      |    |             | 電源ライン異常シミュレー                                  |     |      |      |    |     |     | *1  | *7  |     | *1 | *1   |
|     |            |     |       |             |      |    |             | ションの停止 INT0と同じ                                |     |      |      |    |     |     |     |     |     |    |      |
| 112 | STB?       | R   |       |             |      |    |             | ステータスバイトレジスタ                                  |     |      |      |    |     |     |     |     |     |    |      |
| 112 | CTTC2      | D   |       |             |      |    |             | の他を返り                                         |     |      |      |    |     |     |     |     |     |    |      |
| 113 | STS?       | R   |       |             |      |    |             | スケータスレンスタの値を<br>坂す                            |     |      |      |    |     |     |     |     |     |    |      |
| 114 | SYNC       | w   | 0/OFF | 1/ON        |      |    |             | シンクロ機能の ON/OFF                                |     |      |      | *1 | *1  |     | *1  | *1  | *1  | *1 | *1   |
| 115 | SYNC?      | R   |       | -,          |      |    |             | シンクロ機能の ON (1)、                               |     |      |      |    |     |     |     |     |     |    |      |
|     | 511101     |     |       |             |      |    |             | OFF (0) を返す。、PCR-L                            |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | モードでは (001) または                               |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | (000) を返す。                                    |     |      |      | ¥1 | ¥1  |     | ¥1  |     | ¥1  | *1 | *1   |
| 116 | TI         | w   | 0.0   | 999.9       | 0.1  | ms |             | 11 (開始) 時间(単位をう)<br> けないと's'と判断する)            |     |      |      | ~1 | ~1  |     | .1  |     | *1  | *1 | *1   |
| 117 | T1?        | R   |       |             |      |    |             | T1 (開始)時間を返す                                  |     |      |      |    |     |     |     |     |     |    |      |
| 118 | T1DEG      | W   | 0     | 360         | 1    |    |             | T1(開始)位相                                      |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
| 119 | T1DEG?     | R   |       |             |      |    |             | T1(開始)位相を返す                                   |     |      |      |    |     |     |     |     |     |    |      |
| 120 | T2         | W   | 0     | 9999        | 1    | ms | $\times 1$  | T2 (スロープ)時間 (単位                               |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
|     |            |     | 0.00  | 99.99       | 0.01 | s  | $\times$ 10 | をつけないと 's' と判断す                               |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | S)                                            |     |      |      |    |     |     |     |     |     |    |      |
| 121 | T2?        | R   |       |             |      |    |             | T2 (スローブ) 時間を返す                               |     |      |      |    |     |     |     |     |     |    |      |
| 122 | T3         | W   | 0.0   | 999.9       | 0.1  | ms | $\times 1$  | 13(変動)時間(単位をつ)<br>はないといと判断オス)                 |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
|     |            |     | 0     | 9 9 9 9 9 9 | 1    | ms | $\times$ 10 | ()ないて S C 刊例 9 る)                             |     |      |      |    |     |     |     |     |     |    |      |
| 123 | T3?        | R   |       |             |      |    |             | 13 (変動) 時間を返す                                 |     |      |      |    |     |     |     |     |     |    |      |
| 124 | T3VSET     | W   | 0     | 152.5/      | 0.1  |    |             | 13(変動)電圧<br>                                  |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
|     |            |     |       | 305.0       |      |    |             | ma (本利) 専民さによ                                 |     |      |      |    |     |     |     |     |     |    |      |
| 125 | T3VSE1?    | R   |       | 0.000       |      |    |             | 13 (変則) 电圧を返う                                 |     |      |      | 1  |     |     |     |     |     |    |      |
| 126 | 14         | W   | 0     | 9999        |      | ms | × 1         | 14 (人口一ノ) 時间(単位)<br> をつけないと v と判断す            |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
|     |            |     | 0.00  | 99.99       | 0.01 | s  | $\times$ 10 | る)                                            |     |      |      |    |     |     |     |     |     |    |      |
| 127 | T4?        | R   |       |             |      |    |             | T4 (スロープ) 時間を返す                               |     |      |      |    |     |     |     |     |     |    |      |
| 128 | T5         | W   | 0     | 9 9 9 9 9   | 1    | ms | $\times 1$  | T5(復帰)時間(単位をつ                                 |     |      |      | *1 | *1  |     | *1  |     | *1  | *1 | *1   |
|     |            |     | 0.00  | 99.99       | 0.01 | s  | imes 10     | けないと 's' と判断する)                               |     |      |      |    |     |     |     |     |     |    |      |
| 129 | T5?        | R   |       |             |      |    |             | T5(復帰)時間を返す                                   |     |      |      |    |     |     |     |     |     |    |      |
| 130 | TERM       | W   | 0     | 3           | 1    |    |             | ターミネータ O:CRLF+EOI,                            |     |      |      |    |     |     |     |     |     |    | *8   |
|     |            |     |       |             |      |    |             | 1:CR+EOI, 2:LF+EOI, 3:EOI                     |     |      |      |    |     |     |     |     |     |    |      |
| 131 | TERM?      | R   |       |             |      |    |             | ターミネータの設定を返す                                  |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | (0,1,2,3)。PCR-L モードで<br> は(000 001 002 003)を返 |     |      |      |    |     |     |     |     |     |    |      |
|     |            |     |       |             |      |    |             | t.                                            |     |      |      |    |     |     |     |     |     |    |      |

|     | ヘッダ             |     | フ    | ゜ログラム           | データ     | 9      |                  | 機能                                                        |       |      | Š     |    |      |        | _       | de    | -      |       |       |
|-----|-----------------|-----|------|-----------------|---------|--------|------------------|-----------------------------------------------------------|-------|------|-------|----|------|--------|---------|-------|--------|-------|-------|
|     |                 | W/R | Min  | Max             | 分解<br>能 | 単<br>位 | 補足               |                                                           | 2P/3P | Sync | AC/AC | DC | ACDC | Out On | Seq Rui | SimMo | Sim Ru | FFTOn | Alarm |
| 132 | UNMASK          | W   | 0    | #HFF            |         |        |                  | アンマスクレジスタ(サー<br>ビスリクエストイネーブル<br>レジスタ)の設定                  |       |      |       |    |      |        |         |       |        |       |       |
| 133 | UNMASK?         | R   |      |                 |         |        |                  | アンマスクレジスタのクリ<br>ア                                         |       |      |       |    |      |        |         |       |        |       |       |
| 134 | VA?             | R   |      |                 |         |        |                  | 皮相電力値を返す                                                  |       |      |       |    |      |        |         |       |        |       |       |
| 135 | VM?             | R   |      |                 |         |        |                  | 出力電圧測定モードを返す<br>VMRMS, VMPK, VMAVE                        |       |      |       |    |      |        |         |       |        |       |       |
| 136 | VMAVE           | W   |      |                 |         |        |                  | 出力電圧測定モードを Ave<br>にする                                     |       |      | *1    |    |      |        |         |       |        |       | *1    |
| 137 | VMPK            | W   |      |                 |         |        |                  | 出力電圧測定モードを Peak<br>にする                                    |       |      |       |    |      |        |         |       |        |       | *1    |
| 138 | VMRMS           | W   |      |                 |         |        |                  | 出力電圧測定モードを rms<br>にする                                     |       |      |       |    |      |        |         |       |        |       | *1    |
| 139 | VMSET           | W   |      |                 |         |        |                  | 電圧表示を設定値にする                                               |       |      |       |    |      |        |         |       |        |       | *1    |
| 140 | VOUT?           | R   |      |                 |         |        |                  | 出力電圧の測定値を返す                                               |       |      |       |    |      |        |         |       |        |       |       |
| 141 | VSET            | W   | 0    | 152.5/<br>305.0 | 0.1     |        |                  | ACVSET コマンドと同じ                                            | *7    |      |       | *1 |      |        | *1      |       | *1     |       | *1    |
| 142 | VSET?           | R   |      |                 |         |        |                  | ACVSET? コマンドと同じ                                           |       |      |       |    |      |        |         |       |        |       |       |
| 143 | VSTO            | W   | 0    | 99              | 1       |        | メモリ<br>番号        | 設定されている交流電圧値<br>をメモリにストア                                  | *4    |      |       |    |      |        | *1      | *1    | *1     | *1    | *1    |
| 144 | VSTO xx?        | R   | 0    | 99              | 1       |        |                  | 指定したメモリ番号の交流<br>電圧値を返す。PCR-Lモー<br>ドでは、メモリ番号と交流<br>電圧値を返す。 |       |      |       |    |      |        |         |       |        |       |       |
| 145 | WATT?           | R   |      |                 |         |        |                  | 電力値を返す                                                    |       |      |       |    |      |        |         |       |        |       |       |
| 146 | WAVE            | W   | 1    | 14              | 1       |        | バンク              | 波形バンクの設定                                                  |       |      |       |    |      | *1     | *1      | *1    | *1     | *1    | *1    |
|     |                 |     | 0    | 1023            | 1       |        | アドレ<br>ス         | X軸 0:0°の位置,512:180<br>°の位置<br>X軸 1:マイナスのピー                |       |      |       |    |      |        |         |       |        |       |       |
|     |                 |     | 0    | 4095            | 1       |        | データ              | ク,2048: センタ,4095: プラ<br>スのピーク                             |       |      |       |    |      |        |         |       |        |       |       |
| 147 | WAVE xx,xx?     | R   | 1    | 14              | 1       |        | バンク              | 指定したバンク、アドレス                                              |       |      |       |    |      |        |         |       |        |       |       |
|     |                 |     | 0    | 1023            | 1       |        | アドレ<br>ス         | のデータを返す                                                   |       |      |       |    |      |        |         |       |        |       |       |
| 148 | WAVEBANK        | W   | 0    | 14              | 1       |        |                  | 波形バンクの切換え                                                 |       |      |       | *1 |      |        | *1      | *1    | *1     | *1    | *1    |
| 149 | WAVEBANK?       | R   |      |                 |         |        |                  | 波形バンクを返す                                                  |       |      |       |    |      |        |         |       |        |       |       |
| 150 | WAVEPC          | W   | 1    | 14              | 1       |        | バンク              | 指定バンクのピーククリッ                                              |       |      |       |    |      | *1     | *1      | *1    | *1     | *1    | *1    |
|     |                 |     | 1.10 | 1.41            | 0.01    |        | クレス<br>トファ<br>クタ | ブ値の設定<br>1.41 は Sin 波                                     |       |      |       |    |      |        |         |       |        |       |       |
| 151 | WAVEPC xx?      | R   | 1    | 14              | 1       |        | バンク              | 指定バンクのピーククリッ<br>プ値を返す                                     |       |      |       |    |      |        |         |       |        |       |       |
| 152 | PHASEV          | W   | 0    | 360             | 1       |        |                  | U-V 間位相差 (3P)                                             | *3    |      |       | *1 | *1   |        | *1      |       |        | *1    | *1    |
| 153 | PHASEW          | W   | 0    | 360             | 1       |        |                  | U-W 間位相差(3P)                                              | *3    |      |       | *1 | *1   |        | *1      |       |        | *1    | *1    |
| 154 | VLINE           | W   |      |                 |         |        |                  | 線間電圧表示(3P)                                                | *9    |      |       |    |      |        |         |       |        |       | *1    |
| 155 | VPHASE          | W   |      |                 |         |        |                  | 相電圧表示(3P)                                                 | *3    |      |       |    |      |        |         |       |        |       | *1    |
| 156 | LINEVSET        | W   |      |                 |         |        |                  | 線間電圧の設定(3P)                                               | *4    |      |       |    |      |        | *1      | *1    | *1     |       | *1    |
| 157 | UCURHARMA<br>N? | R   | 1    | 40              | 1       |        |                  | U 相の N 次高調波データを<br>返す (3P)                                | *3    |      |       |    |      |        |         |       |        | *3    |       |
| 158 | VCURHARMA<br>N? | R   | 1    | 40              | 1       |        |                  | V 相の N 次高調波データを<br>返す (3P)                                | *3    |      |       |    |      |        |         |       |        | *3    |       |

|     | ヘッダ                |     | プ   | ログラム | 、データ    | 7      |    | 機能                                                         |       |      | Ś     |    |      |        | _       | le     | _      |        |       |
|-----|--------------------|-----|-----|------|---------|--------|----|------------------------------------------------------------|-------|------|-------|----|------|--------|---------|--------|--------|--------|-------|
|     |                    | W/R | Min | Max  | 分解<br>能 | 単<br>位 | 補足 |                                                            | 2P/3P | Sync | AC/AC | DC | ACDC | Out On | Seq Rur | SimMod | Sim Ru | FFT On | Alarm |
| 159 | WCURHARMA<br>N?    | R   | 1   | 40   | 1       |        |    | W相のN次高調波データを<br>返す (3P)                                    | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 160 | UCURHARMP<br>N?    | R   | 1   | 40   | 1       |        |    | U相の N次高調波データを<br>100 分率で返す (3P)                            | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 161 | VCURHARMP<br>N?    | R   | 1   | 40   | 1       |        |    | V相のN次高調波データを<br>100分率で返す(3P)                               | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 162 | WCURHARMP<br>N?    | R   | 1   | 40   | 1       |        |    | W相のN次高調波データを<br>100分率で返す(3P)                               | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 163 | UCURHARMA<br>ODD?  | R   |     |      |         |        |    | U相の奇数次高調波データ<br>を","で区切って返す(3P)                            | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 164 | VCURHARMA<br>ODD?  | R   |     |      |         |        |    | ∨相の奇数次高調波データ<br>を "," で区切って返す (3P)                         | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 165 | WCURHARMA<br>ODD?  | R   |     |      |         |        |    | W相の奇数次高調波データ<br>を","で区切って返す(3P)                            | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 166 | UCURHARMP<br>ODD?  | R   |     |      |         |        |    | U相の奇数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 167 | VCURHARMP<br>ODD?  | R   |     |      |         |        |    | ∨相の奇数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 168 | WCURHARMP<br>ODD?  | R   |     |      |         |        |    | W相の奇数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 169 | UCURHARMA<br>EVEN? | R   |     |      |         |        |    | U相の偶数次高調波データ<br>を "," で区切って返す (3P)                         | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 170 | VCURHARMA<br>EVEN? | R   |     |      |         |        |    | Ⅴ相の偶数次高調波データ<br>を "," で区切って返す (3P)                         | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 171 | WCURHARMA<br>EVEN? | R   |     |      |         |        |    | W相の偶数次高調波データ<br>を "," で区切って返す (3P)                         | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 172 | UCURHARMP<br>EVEN? | R   |     |      |         |        |    | U相の偶数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 173 | VCURHARMP<br>EVEN? | R   |     |      |         |        |    | ∨相の偶数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 174 | WCURHARMP<br>EVEN? | R   |     |      |         |        |    | W相の偶数次高調波データ<br>を","で区切って返す(100<br>分率)(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 175 | UCURHARMA<br>LOW?  | R   |     |      |         |        |    | U相の 1~20 次の高調波デー<br>タを "," で区切って返す<br>(3P)                 | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 176 | VCURHARMA<br>LOW?  | R   |     |      |         |        |    | V相の1~20次の高調波デー<br>タを","で区切って返す<br>(3P)                     | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 177 | WCURHARMA<br>LOW?  | R   |     |      |         |        |    | W相の1~20次の高調波<br>データを","で区切って返す<br>(3P)                     | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 178 | UCURHARMP<br>LOW?  | R   |     |      |         |        |    | U相の 1~20 次の高調波デー<br>タを "," で区切って返す<br>(100 分率) (3P)        | *3    |      |       |    |      |        |         |        |        | *3     |       |
| 179 | VCURHARMP<br>LOW?  | R   |     |      |         |        |    | V相の1 <sup>~</sup> 20次の高調波デー<br>タを","で区切って返す<br>(100分率)(3P) | *3    |      |       |    |      |        |         |        |        | *3     |       |

|     | ヘッダ       |     | ブ   | ゜ログラム  | データ     | 7      |    | 機能                                 |       |      | Ň     |    |      |        | ч       | de    | u      |        |       |
|-----|-----------|-----|-----|--------|---------|--------|----|------------------------------------|-------|------|-------|----|------|--------|---------|-------|--------|--------|-------|
|     |           | W/R | Min | Max    | 分解<br>能 | 単<br>位 | 補足 | -                                  | 2P/3P | Sync | AC/AC | DC | ACDC | Out On | Seq Rui | SimMo | Sim Ru | FFT On | Alarm |
| 180 | WCURHARMP | R   |     |        |         |        |    | W相の1~20次の高調波                       | *3    |      |       |    |      |        |         |       |        | *3     |       |
|     | LOW?      |     |     |        |         |        |    | データを "," で区切って返す                   |       |      |       |    |      |        |         |       |        |        |       |
|     |           |     |     |        |         |        |    | (100 分率)(3P)                       |       |      |       |    |      |        |         |       |        |        |       |
| 181 | UCURHARMA | R   |     |        |         |        |    | U相の21 40 次の高調波<br> データを""で区切って返す   | *3    |      |       |    |      |        |         |       |        | *3     |       |
|     | HIGH?     |     |     |        |         |        |    | (3P)                               |       |      |       |    |      |        |         |       |        |        |       |
| 182 | VCURHARMA | R   |     |        |         |        |    | ▼相の 21~40 次の高調波                    | *3    |      |       |    |      |        |         |       |        | *3     |       |
|     | HIGH?     |     |     |        |         |        |    | データを "," で区切って返す                   |       |      |       |    |      |        |         |       |        |        |       |
|     |           |     |     |        |         |        |    | (3P)                               |       |      |       |    |      |        |         |       |        |        |       |
| 183 | WCURHARMA | R   |     |        |         |        |    | W相の21~40次の高調波                      | *3    |      |       |    |      |        |         |       |        | *3     |       |
|     | HIGH?     |     |     |        |         |        |    | (3P)                               |       |      |       |    |      |        |         |       |        |        |       |
| 184 | UCURHARMP | R   |     |        |         |        |    | U相の 21~40 次の高調波                    | *3    |      | -     |    | -    |        |         |       |        | *3     |       |
|     | HIGH?     |     |     |        |         |        |    | データを "," で区切って返す                   |       |      |       |    |      |        |         |       |        |        |       |
|     |           |     |     |        |         |        |    | (100 分率) (3P)                      |       |      |       |    |      |        |         |       |        |        |       |
| 185 | VCURHARMP | R   |     |        |         |        |    | V相の21~40次の高調波                      | *3    |      |       |    |      |        |         |       |        | *3     |       |
|     | HIGH?     |     |     |        |         |        |    | アータを "," で区切って返す<br> (100 分率) (3P) |       |      |       |    |      |        |         |       |        |        |       |
| 186 | WCURHARMP | P   |     |        |         |        |    | (100 ) 平) (31)<br>W相の 21~40 次の高調波  | *3    |      |       |    |      |        |         |       |        | *3     |       |
| 100 | HIGH?     | к   |     |        |         |        |    | データを "," で区切って返す                   |       |      |       |    |      |        |         |       |        |        |       |
|     | Inom.     |     |     |        |         |        |    | (100 分率) (3P)                      |       |      |       |    |      |        |         |       |        |        |       |
| 187 | UVSET     | W   | 0   | 152.5/ | 0.1     |        |    | U相の電圧値設定(3P)                       | *7    |      |       |    |      |        | *1      |       | *1     |        | *1    |
|     |           |     |     | 305.0  |         |        |    |                                    |       |      |       |    |      |        |         |       |        |        |       |
| 188 | UVSET?    | R   |     |        |         |        |    | U相の電圧値を返す(3P)                      | *3    |      |       |    |      |        |         |       |        |        | *1    |
| 189 | VVSET     | W   | 0   | 152.5/ | 0.1     |        |    | V相の電圧値設定(3P)                       | *7    |      |       |    |      |        | *1      |       | *1     |        | *1    |
|     |           |     |     | 305.0  |         |        |    |                                    |       |      |       |    |      |        |         |       |        |        |       |
| 190 | VVSET?    | R   |     |        |         |        |    | V相の電圧値を返す(3P)                      | *3    |      |       |    |      |        |         |       |        |        | *1    |
| 191 | WVSET     | W   | 0   | 152.5/ | 0.1     |        |    | W相の電圧値設定(3P)                       | *7    |      |       |    |      |        | *1      |       | *1     |        | *1    |
|     |           |     |     | 305.0  |         |        |    |                                    |       |      |       |    |      |        |         |       |        |        |       |
| 192 | WVSET?    | R   |     |        |         |        |    | W相の電圧値を返す(3P)                      | *3    |      |       |    |      |        |         |       |        |        | *1    |

\*1. 無効なコマンド

\*2. Not で無効

\*3. 線間電圧表示モードまたは(U相電圧) ≠ (V相電圧) ≠ (W相電圧) で無効

\*4. SIMSTOP/SIMRUN を参照

\*5. オーバーロード以外のアラーム発生で無効

\*6. 線間電圧表示モードで無効

- \*7. Sim Mode で出力オフのとき無効
- \*8. RS-232Cでは無効
- \*9. (U 相電圧) ≠ (V 相電圧) ≠ (W 相電圧) で無効

| 2P/3P   | <b>2P03-PCR-LA</b> (単相 3 線出力ドライバ)または <b>3P03-PCR-LA</b> (三相出力ドライバ)を使用している場合。                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Sync    | シンクロ機能を動作させている場合。                                                                                                                       |
| AC/AC-S | AC または AC-S モードで動作している場合。                                                                                                               |
| DC      | DC モードで動作している場合。                                                                                                                        |
| ACDC    | AC+DC モードで動作している場合。                                                                                                                     |
| Out On  | 出力がオンで、負荷への電力が供給されている状態。                                                                                                                |
| Seq Run | RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リ<br>モートコントローラを使用して、シーケンス動作を実行中の場合。                                                        |
| SimMode | RS-232C コントロール、GPIB インターフェース、RC03-PCR-LA リモートコ<br>ントローラ、または RC04-PCR-LA リモートコントローラを使用して、電源<br>ライン異常シミュレーション機能を動作させている場合(実行前の設定を含<br>む)。 |
| Sim Run | RS-232C コントロール、GPIB インターフェース、RC03-PCR-LA リモートコ<br>ントローラ、または RC04-PCR-LA リモートコントローラを使用して、電源<br>ライン異常シミュレーション動作を実行中の場合。                   |
| FFT On  | RS-232C コントロール、GPIB インターフェース、または RC04-PCR-LA リ<br>モートコントローラを使用して、高調波電流解析機能を動作させている場合。                                                   |
| Alarm   | アラームが発生した場合。                                                                                                                            |

# 40

# 第10章 オプション

この章では、オプションについて説明します。

# 10.1 オプションの種類と組み合わせ

オプションとして以下の製品が用意されています。オプションは、本機の前面イン ターフェースコネクタまたは後面のスロットに接続して使用することができます (ラインインピーダンスネットワーク、ハーモニクスアナライザ、イミュニティテ スタを除く)。

| 品名                                     | 形名                           | 接続                                |
|----------------------------------------|------------------------------|-----------------------------------|
| リモートコントローラ                             | RC03-PCR-LA                  | 前面のコネクタ                           |
| リモートコントローラ                             | RC04-PCR-LA                  | 前面のコネクタ                           |
| GPIB インターフェース                          | IB03-PCR-LA                  | 後面のスロット<br>No.2                   |
| 単相3線出力ドライバ                             | 2P03-PCR-LA                  | 後面のスロット<br>No.3,4                 |
| 三相出力ドライバ                               | 3P03-PCR-LA                  | 後面のスロット<br>No.3,4                 |
| 並列運転ドライバ                               | PD03M-PCR-LA<br>PD03S-PCR-LA | 後面のスロット<br>No.3,4                 |
| 出力拡張キット                                | OT01-PCR-LA/2,/3             | 「10.15 出力拡張<br>キット」を参照し<br>てください。 |
| ラインインピーダンス<br>ネットワーク<br>(インピーダンス切り替え型) | LIN40MA-PCR-L                | 後面のスロット<br>No.1,3,4               |
| ハーモニクスアナライザ                            | HA01F-PCR-L                  | 後面のスロット<br>No.1,3,4               |
| イミュニティテスタ                              | IT01-PCR-L                   | 後面のスロット<br>No.1,3,4               |

本体後面の適合スロットが 2 つ以上ある場合は、オプションボードをそれらのス ロットのどれに装着しても同じように作動します。

IB03-PCR-LA を使用するには、GPIB インターフェース付きのコンピュータと GPIB ケーブルが必要です。

ラインインピーダンスネットワークLIN40MA-PCR-Lは、PCR1000LA、PCR2000LA、 PCR4000LA との接続を標準としています。

LIN40MA-PCR-L は、電圧、周波数に合わせてインピーダンスの自動切り替えを行 うためのコントロールカード (LIN40MA-PCR-L に付属)を、スロット 1 (3、4 も 可) に挿入します。

HA01F-PCR-L および IT01-PCR-L についてもコントロールカード (各オプションに 付属)を、スロット1(3、4も可)に挿入します。

オプションを使用する場合には、各オプションの取扱説明書を参照してください。

## オプションの組合せ

|          | RC03             | RC04             | IB03             | *RS-<br>232C     | 3P03 | 2P03 | PD03M       | PD03S            |
|----------|------------------|------------------|------------------|------------------|------|------|-------------|------------------|
| RC03     | _                | ×                | $\bigtriangleup$ | $\triangle$      | ×    | ×    | $\triangle$ | ×                |
| RC04     | ×                | —                | $\bigtriangleup$ | $\bigtriangleup$ | (U)  | (U)  | 0           | ×                |
| IB03     | $\bigtriangleup$ | $\bigtriangleup$ | —                | $\bigtriangleup$ | (U)  | (U)  | 0           | ×                |
| *RS-232C | $\bigtriangleup$ | $\bigtriangleup$ | $\bigtriangleup$ | —                | (U)  | (U)  | 0           | $\bigtriangleup$ |
| 3P03     | ×                | ○(U)             | (U)              | (U)              | —    | ×    | 0           | ×                |
| 2P03     | ×                | (U)              | (U)              | (U)              | ×    | _    | 0           | ×                |
| PD03M    | $\bigtriangleup$ | 0                | 0                | 0                | 0    | 0    | _           | —                |
| PD03S    | ×                | ×                | ×                | $\bigtriangleup$ | ×    | ×    | _           | —                |

〇:同時に使用可能。(U) は U 相機のみに装着可能。

△:同時に装着可能。ただし同時使用は不可能。

×;同時に装着不可能。

-:2台の同一オプションは使用不可能。

\*RS-232C:標準装備。

ラインインピーダンスネットワークは、他のオプションと同時に使用することができます。

# ▲ 注意 ・ "-"印および"×"印の組合せは絶対に行わないでください。オプションが正常に作動しないだけでなく、オプションおよび本機の故障の原因になります。

## ■ RS-232C は標準装備です。

RS-232C コントロールでは以下の機能が使用できます。

「10.2 電源ライン異常シミュレーション」 「10.3 シーケンス動作」 「10.4 高調波電流解析機能」 「10.5 特殊波形出力」 「10.6 出力インピーダンス設定」 「10.7 力率、VA、ピークホールド電流計測」 「10.8 出力オン、オフの位相設定」 「10.9 AC+DC モード」 「10.10 メモリ機能の拡張」

# 10.2 電源ライン異常シミュレーション

停電・電圧降下 (ディップ)・電圧上昇 (ポップ) のシミュレーションが可能です。 スイッチング電源や電子機器などの試験に使用することができます。

このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC03-PCR-LA |
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |



# 10.3 シーケンス動作

出力電圧や周波数などと時間設定を組み合わせて自動運転を行うことができます。

このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |



図 10-2 波形例

## 10.4 高調波電流解析機能

出力電流の高調波解析を行うことができます。測定方法を簡略化しているため、IEC 規格等に適合していません。規格適合測定には、HA01F-PCR-L ハーモニクスアナ ライザをご使用ください。

## このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |

## 10.5 特殊波形出力

サイン波形以外の波形を出力することができます。出力できる波形は、サイン波形 のピークがつぶれた「ピーククリップ波形」が標準で用意されています。また、波 形のデータを本機に転送すれば、「任意波形」を出力することができます。

## ピーククリップ波形および任意波形機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| GPIB インターフェース | IB03-PCR-LA |

#### ピーククリップ波形機能のみをもつ製品名と形名

| 品名         | 形名          |
|------------|-------------|
| リモートコントローラ | RC04-PCR-LA |



図10-3 波形例

# 10.6 出力インピーダンス設定

本機の出力インピーダンス(出力抵抗)はほぼ 0Ω です。商用電源は数 mΩ から 数 Ω のインピーダンス(抵抗)を持っています。本機ではオプションを接続する と、出力インピーダンスを可変することが可能となり、商用電源と同じ環境をシ ミュレートすることができます。

この機能は本体内でバックアップされています。そのため、設定条件を変更しない 場合には、一度オプションを付けて設定すれば、オプションを外しても以後同じ状 態で使用することができます。

このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |

# 10.7 力率、VA、ピークホールド電流計測

「力率測定」、「VA 測定」、「ピークホールド電流測定」の測定が可能になります。 ピークホールド電流測定は、ピーククリア信号またはメッセージを本機が受け付け るまでの間、ピーク電流の計測を行います。突入電流の測定などに便利な機能です。 ピークホールド値測定は、アナログピークホールド回路で電流のピーク値を測定 し、そのデータの絶対値の最大値を求めています。したがって、ピーク電流表示は 符号の付かない絶対値表示になります。

このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |

# 10.8 出力オン、オフの位相設定

出力 オン、オフの位相の設定がそれぞれ単独で可能です。この機能は本体内でバッ クアップされています。そのため、設定条件を変更しない場合には、一度オプショ ンを付けて設定すれば、オプションを外しても以後同じ状態で使用することができ ます。

## このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |



## 10.9 AC+DC モード

直流に交流が重畳した電圧波形を出力することができます。

## このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |



図10-5 波形例

## 10.10 メモリ機能の拡張

本機には標準で9組の電圧と周波数の設定値をメモリ(メモリ番地1~9)に記憶 し、必要なときに読み出して出力する機能を備えています。オプションを付けるこ とにより、最大99組の電圧と周波数の設定値を記憶することができます。

AC + DC モードでは、AC のメモリ値と DC のメモリ値が出力され、<math>AC + DC モードでのメモリ動作が可能になります。

## このオプション機能をもつ製品名と形名

| 品名            | 形名          |
|---------------|-------------|
| リモートコントローラ    | RC04-PCR-LA |
| GPIB インターフェース | IB03-PCR-LA |

# 10.11 レギュレーションアジャスト

出力電流に合わせて出力電圧を自動的に調整し、定電圧化を行います。この機能は、 「センシング機能」と同じような目的に使用します。センシング機能は、センシン グポイントの電圧を測定し、センシングポイントの電圧を一定に保つ機能です。そ れに対してレギュレーションアジャストは、出力電流による電圧降下を計算し、そ の降下分だけ出力電圧を上昇させる機能です。

本機と負荷との間が遠く離れていて、負荷端の電圧を安定化させたい場合に使用します。

レギュレーションアジャスト実行時には、電圧の安定化精度・歪率・応答速度が、 本機の通常の性能より低下します。用途によっては、使用できないことがあります ので、仕様を確認して利用してください。

## このオプション機能をもつ製品名と形名

| 品名         | 形名          |
|------------|-------------|
| リモートコントローラ | RC04-PCR-LA |

## 10.12 単相3線出力

本機を2台用意し、出力を直列に結線します。単相3線出力が得られます。

### このオプション機能をもつ製品名と形名

| 品名         | 形名          |
|------------|-------------|
| 単相3線出力ドライバ | 2P03-PCR-LA |

# 10.13 三相出力

本機を3台用意し、出力をスター結線します。 線間電圧設定および線間電圧測定 ができます。また、相電圧を各相毎に設定したり、位相差を可変することもできま す。

## このオプション機能をもつ製品名と形名

| 品名       | 形名          |
|----------|-------------|
| 三相出力ドライバ | 3P03-PCR-LA |

## 10.14 並列運転(出力容量拡大)

本機 2~5台の出力を並列接続することにより、単相大容量出力が得られます。単 体の設備を必要に応じて統合し、出力容量を拡大できます。

**PCR2000LA、PCR4000AL、PCR6000LA**は、同一機種を5台までワンコントロール 並列運転でき、最大 30kVA 単相出力の交流電源となります。

出力容量= PCR-LA1 台の出力容量×台数

このオプション機能に必要な製品名、形名と台数

| 旦夕                   | 形夕           | 並列数 |   |   |   |  |
|----------------------|--------------|-----|---|---|---|--|
|                      |              | 2   | 3 | 4 | 5 |  |
| 並列運転ドライバ<br>(マスタ機用)  | PD03M-PCR-LA | 1   | 1 | 1 | 1 |  |
| 並列運転ドライバ<br>(スレーブ機用) | PD03S-PCR-LA | 1   | 2 | 3 | 4 |  |

PD03M-PCR-LA はマスタ(主)機に使用し、PD03S-PCR-LA はスレーブ(従)機に 使用します。

2P03-PCR-LA(単相 3 線出力ドライバ)または 3P03-PCR-LA(三相出力ドライバ) と組み合わせて使用する場合の並列運転台数は 3 台までとなります。

# 10.15 出力拡張キット

本機を使用して出力切り替えシステムが構築できます。PCR-LAの出力を切り替えて、単相/単相3線切り替えと、単相/三相切り替えの2種類があります。

単相 / 単相3線切り替えシステム

| 形名                | PCR-LA の台数   | 定格出力容量 |
|-------------------|--------------|--------|
| OT01-PCR4000LA/2  | PCR2000LA 2台 | 4 kVA  |
| OT01-PCR8000LA/2  | PCR4000LA 2台 | 8 kVA  |
| OT01-PCR12000LA/2 | PCR6000LA 2台 | 12 kVA |

単相 / 三相切り替えシステム

| 形名                | PCR-LA の台数   | 定格出力容量 |
|-------------------|--------------|--------|
| OT01-PCR6000LA/3  | PCR2000LA 3台 | 6 kVA  |
| OT01-PCR12000LA/3 | PCR4000LA 3台 | 12 kVA |
| OT01-PCR18000LA/3 | PCR6000LA 3台 | 18 kVA |

# 10.16 出力インピーダンスを商用電源に近似させる 機能

本機と負荷との間に、標準化されたラインインピーダンスネットワークを接続する ことにより、商用電源を模擬することができます。この機能は、負荷電流の高調波 成分およびフリッカを測定するために使用します。

インピーダンス値は、以下の規定値に設定されています。

・家電・汎用品高調波抑制ガイドライン(高調波電流測定)

・IEC61000-3-3 規格(電圧変動、フリッカ測定)

このオプション機能を持つ製品名と形名

| 品名               | 形名            |
|------------------|---------------|
| ラインインピーダンスネットワーク | LIN40MA-PCR-L |

インピーダンス

0.4 Ω + 0.37 mH :単相 100 V

0.38 Ω + 0.46 mH: 単相 200 V

0.4 Ω + jn0.25 Ω :単相 230 V

0.19 Ω + 0.23 mH: 2 台で三相 3 線式、4 線式に対応

0.24 Ω + jn0.15 Ω:2台で三相 3 線式、4 線式に対応 n: 高調波次数

LIN40MA-PCR-L は、本機と組み合わせると、本機からの電圧の設定により規格に応じたインピーダンスが自動的に選択されます。(マニュアル操作も可)

また、インピーダンスをバイパスする機能もあります。(パネル面のスイッチにより切り替え)

LIN40MA-PCR-L を 2 台使用することにより三相負荷および単相 3 線負荷に対応します。

(三相 3 線式 200 V系:最大負荷容量 6.9 kVA、三相 3 線式または 4 線式 400 V (相 電圧 230 V)系:最大負荷容量 2 kVA、単相 3 線式 200 V系:最大負荷容量 4 kVA)

# 10.17 ハーモニクスアナライザ

高調波電流、電圧変動、フリッカ測定に使用します。専用のコントロールソフト ウェアを使用すれば、高調波電流測定では、IEC61000-3-2 規格と家電・汎用品高調 波抑制ガイドラインに適合した測定が可能です。電圧変動、フリッカ測定では、 IEC61000-3-3 規格に適合した測定が可能です。

## このオプション機能をもつ製品名と形名

| 品名          | 形名          |
|-------------|-------------|
| ハーモニクスアナライザ | HA01F-PCR-L |

# 10.18 イミュニティテスタ

電圧ディップ・瞬時停電および電圧変動のイミュニティ試験に使用します。専用の コントロールソフトウェアを使用すれば、IEC61000-4-11 規格に適合した試験が可 能です。

### このオプション機能をもつ製品名と形名

| 品名        | 形名         |
|-----------|------------|
| イミュニティテスタ | IT01-PCR-L |

# 10.19 ラックマウント

下表のラックマウントブラケットを使用することにより当社の標準ラック KRO1600、KRO1250、KRO900、および RC322に組み込むことができます。

ラックのついての詳細はカタログ等をご覧ください。

| ラックマウントする     | 必要なオプション形名        |                    |  |  |  |
|---------------|-------------------|--------------------|--|--|--|
| PCR-LA シリーズ形名 | JIS 規格<br>(ミリサイズ) | EIA 規格<br>(インチサイズ) |  |  |  |
| PCR500LA      | KRB250            | KRB5               |  |  |  |
| PCR1000LA     | KRB400            | KRB8               |  |  |  |
| PCR2000LA     | KRB500            | KRB11              |  |  |  |
| PCR4000LA     | KRB850            | KRB19              |  |  |  |
| PCR6000LA     | *KRB1150          | *KRB25             |  |  |  |

\*KRB1150 および KRB25 は受注生産品です。



# 第11章 仕様

この章では、本機の電気的、機械的仕様と動作特性を記載しています。

# 11.1 本体部仕様

## 入力定格(AC 実効値)

|                             | 形名 | PCR500LA         | PCR1000LA        | PCR2000LA       | PCR4000LA       | PCR6000LA  |
|-----------------------------|----|------------------|------------------|-----------------|-----------------|------------|
| 電圧(入力電圧レンジ 100 V/200 V)(*1) |    |                  | 170 V ~<br>250 V |                 |                 |            |
| 相数、周波数                      |    | 単相、47 Hz ~ 63 Hz |                  |                 |                 |            |
| 皮相電力                        |    | 約1kVA            | 約2kVA            | 約4 kVA          | 約 8 kVA         | 約 12 kVA   |
| 力率 (*2)                     |    | 0.95(標準値)        |                  |                 |                 |            |
| 電流(入力電圧レンジ 100 V/200 V)     |    | 12 A/6 A<br>以下   | 24 A/12 A<br>以下  | 48 A/24 A<br>以下 | 96 A/48 A<br>以下 | 72 A<br>以下 |

## 出力定格 AC モード(AC 実効値)

| 形名                                   | PCR500LA                | PCR1000LA                                               | PCR2000LA | PCR4000LA | PCR6000LA |  |  |
|--------------------------------------|-------------------------|---------------------------------------------------------|-----------|-----------|-----------|--|--|
| 電圧(出力電圧レンジ 100 V/200 V)(*3)          |                         | $1 \text{ V} \sim 150 \text{ V/2 V} \sim 300 \text{ V}$ |           |           |           |  |  |
| 電圧設定確度(出力電圧レンジ 100 V/200 V)<br>(*17) | ± (0.3 % of 設定値 +0.6 V) |                                                         |           |           |           |  |  |
| 最大電流 (*4)                            | 5 A/2.5 A               | 10 A/5 A                                                | 20 A/10 A | 40 A/20 A | 60 A/30 A |  |  |
| 相数                                   | 単相                      |                                                         |           |           |           |  |  |
| 電力容量                                 | 500 VA                  | 1 kVA                                                   | 2 kVA     | 4 kVA     | 6 kVA     |  |  |
| 最大ピーク電流 (*5)                         | 最大電流(実効値)の4倍            |                                                         |           |           |           |  |  |
| 負荷力率                                 | 0~1(進相または遅相)(*4)        |                                                         |           |           |           |  |  |
| 周波数                                  |                         | 1 Hz ~ 999.9 Hz(*4,6)                                   |           |           |           |  |  |

## 出力定格 DC モード

| 形名                                   | PCR500LA                                                            | PCR1000LA     | PCR2000LA   | PCR4000LA   | PCR6000LA |  |
|--------------------------------------|---------------------------------------------------------------------|---------------|-------------|-------------|-----------|--|
| 電圧(出力電圧レンジ 100 V/200 V)(*3)          | $1.4 \text{ V} \sim 212 \text{ V}/2.8 \text{ V} \sim 424 \text{ V}$ |               |             |             |           |  |
| 電圧設定確度(出力電圧レンジ 100 V/200 V)<br>(*18) |                                                                     | $\pm$ (0.05 % | of 設定值 +0.0 | 05 V/0.1 V) |           |  |
| 最大電流 (*4)                            | 2.5 A/1.25 A                                                        | 5 A/2.5 A     | 10 A/5 A    | 20 A/10 A   | 30 A/15 A |  |
| 最大瞬時電流 (*19)                         | 最大電流(実効値)の4倍                                                        |               |             |             |           |  |
| 電力容量                                 | 250 W                                                               | 500 W         | 1 kW        | 2 kW        | 3 kW      |  |

## 出力電圧安定度

|                                                         | 形名                                 | PCR500LA                                                                                                                                          | PCR1000LA | PCR2000LA | PCR4000LA | PCR6000LA |
|---------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| 入力電圧                                                    | 変動(定格範囲の変化に対し)                     |                                                                                                                                                   | •         | ± 0.1%以内  | •         |           |
| 出力電流                                                    | 変動(定格の0~100%変化に対し)                 | ± 0.1V/± 0.2V 以内(出力電圧レンジ 100 V/200 V)(*7)                                                                                                         |           |           |           | V) (*7)   |
| 出力周波                                                    | AC モード (40 Hz ~ 999.9 Hz におい<br>て) | ↓ ± 0.3 % 以内 (*8)                                                                                                                                 |           |           |           |           |
| 数変動<br>AC-Sモード(40 Hz ~ 999.9 Hz におい<br>て)<br>± 1%以内(*8) |                                    |                                                                                                                                                   |           |           |           |           |
| リップル<br>DC モート                                          | ノイズ:<br>、(5Hz ~ 1 MHz 成分 )         | 0.1 Vrms         0.15 Vrms         0.2 Vrms         0.3 Vrms         0.4 Vrms           以下         以下         以下         以下         以下         以下 |           |           |           |           |
| 周囲温度                                                    | 変動(定格範囲の変化に対し)                     | 100 ppm/ °C (標準値)(*9)                                                                                                                             |           |           |           |           |

## 出力周波数設定確度・安定度、波形歪率、応答速度、効率

| 形名             |         | PCR500LA                | PCR1000LA | PCR2000LA | PCR4000LA | PCR6000LA |
|----------------|---------|-------------------------|-----------|-----------|-----------|-----------|
| 周波数設定確度        | 全ての定格範囲 | ± 1×10 <sup>-4</sup> 以内 |           |           |           |           |
| 出力周波数安定度       | の変化に対して | ± 5×10 <sup>-5</sup> 以内 |           |           |           |           |
| 出力電圧波形歪率 (*10) |         | 0.3%以下                  |           |           |           |           |
| 出力電圧応答速度 (*11) |         | 30 µs (標準値)             |           |           |           |           |
| 効率 (*2)        |         | 50%以上                   |           |           |           |           |

## 指示計(蛍光表示管表示)

| 形名              |                     |                | PCR500LA                                                                                                    | PCR1000LA                                                                | PCR2000LA  | PCR4000LA | PCR6000LA |  |  |  |
|-----------------|---------------------|----------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|-----------|-----------|--|--|--|
|                 | 公砚此                 | RMS 表示モード      | $\pm$ 0.1 V                                                                                                 |                                                                          |            |           |           |  |  |  |
| 電圧計             | Л Л <del>Т</del> НС | PEAK,AVE 表示モード | $0.2 \text{ V}(0 \text{ V} \sim \pm 212 \text{ V})/0.3 \text{ V}(\pm 212 \text{ V} \sim \pm 424 \text{ V})$ |                                                                          |            |           |           |  |  |  |
| (*12,14)        | 確宦                  | RMS,AVE 表示モード  | ± (1 % o                                                                                                    | ± (1 % of r dg+2 digits) 以内 (10 V ~ 424 V、常温において)                        |            |           |           |  |  |  |
|                 | 7世/文                | PEAK 表示モード     | ± (2 % o                                                                                                    | f r dg+2 digits)                                                         | 以内 (10 V ~ | 424 V、常温に | こおいて)     |  |  |  |
|                 | 分解能                 | RMS 表示モード      | 0.01 A                                                                                                      | 0.01 A                                                                   | 0.01 A     | 0.1 A     | 0.1 A     |  |  |  |
|                 | 刀用于旧                | PEAK,AVE 表示モード | 0.02 A                                                                                                      | 0.02 A                                                                   | 0.02 A     | 0.2 A     | 0.2 A     |  |  |  |
| 電流計<br>(*12,14) | 確度                  | RMS,AVE 表示モード  | (*20) ± (1% of rdg+2 digits) 以内<br>(定格最大電流の5%から定格最大電流、常温において)                                               |                                                                          |            |           |           |  |  |  |
|                 |                     | PEAK 表示モード     | (*20) ± (2% of rdg+4 digits) 以内<br>(定格最大電流の5%から定格最大ピーク電流、常温において                                             |                                                                          |            |           |           |  |  |  |
|                 | 分解能                 |                | 0.1 W/1 W                                                                                                   |                                                                          |            |           |           |  |  |  |
| 電力計<br>(*15)    | 15) 確度              |                |                                                                                                             | ± (1 % of r dg+3 digits) 以内<br>(定格電力容量の 10 % から定格電力容量、負荷力率 1、<br>常温において) |            |           |           |  |  |  |
| 周波数計<br>(*13)   | 周波数計<br>*13) 分解能    |                |                                                                                                             | 0.01 Hz/0.1 Hz                                                           |            |           |           |  |  |  |

## 絶縁抵抗、耐電圧、回路方式、使用周囲温度 / 湿度

| 形名                           | PCR500LA                          | PCR1000LA | PCR2000LA        | PCR4000LA | PCR6000LA |
|------------------------------|-----------------------------------|-----------|------------------|-----------|-----------|
| 絶縁抵抗(入力-筐体、出力-筐体、入力-出<br>力間) | DC500 V、30 M Ω 以上                 |           | DC500 V、10M Ω 以上 |           |           |
| 耐電圧 (入力-筐体、出力-筐体、入力-出<br>力間) | AC1.5 kV、1 分間                     |           |                  |           |           |
| 回路方式                         | リニアアンプ方式                          |           |                  |           |           |
| 使用温度/湿度                      | 0℃~ +50℃/20% ~ 80%RH(結露なきこと)      |           |                  |           |           |
| 保存温度/湿度                      | -10℃~ +60 ℃ /90 %RH 以下 ( 結露なきこと ) |           |                  |           |           |

## 外形寸法、質量

| 形名        | PCR500LA         | PCR1000LA           | PCR2000LA     | PCR4000LA     | PCR6000LA      |
|-----------|------------------|---------------------|---------------|---------------|----------------|
| 从形寸注(管休部) | $430 \times 217$ | 430 	imes 351 	imes | 430 	imes 484 | 430 	imes 839 | 430 	imes 1105 |
|           | imes 550 mm      | 550 mm              | imes 550 mm   | imes 550 mm   | imes 550 mm    |
| 質量        | 約 25 kg          | 約 49 kg             | 約 69 kg       | 約 120 kg      | 約 160 kg       |

仕 様

#### 入出力端子盤結線ねじ、付属品

| 形名            |               |     | PCR500LA                          | PCR1000LA                      | PCR2000LA                              | PCR4000LA               | PCR6000LA               |  |
|---------------|---------------|-----|-----------------------------------|--------------------------------|----------------------------------------|-------------------------|-------------------------|--|
| 入力端子盤結線ねじ     |               |     | (インレット)                           | M6                             |                                        |                         |                         |  |
| 出力端子盤結線ねじ     |               |     | M4                                |                                | M6                                     |                         |                         |  |
|               |               | 形状  | 3 芯キャブタ                           | タイヤケーブル 単芯ケーブル 3本              |                                        |                         | 本                       |  |
|               | (導体断面積/長さ)    | 電線径 | 2 mm <sup>2</sup> /3 m<br>3P プラグ付 | $5.5 \text{ mm}^2/3 \text{ m}$ | 8 mm <sup>2</sup> /3 m                 | 22 mm <sup>2</sup> /3 m | 22 mm <sup>2</sup> /3 m |  |
| 付属品           | ケーブルクランパ      | _   | 1 組                               |                                |                                        |                         |                         |  |
| 13 /243 111 - | ケーブルクランパ固定用ねじ |     | _                                 | M3:1本<br>M4:2本                 | 本 M3: 2 本 M3: 4 本<br>本 M4: 2 本 M4: 2 本 |                         | 4本<br>2本                |  |
|               | 取扱説明書         |     | 1冊                                |                                |                                        |                         |                         |  |
|               | WEIGHT シール    |     | 1枚                                |                                |                                        |                         |                         |  |

#### 適合規格等

| 形名                | PCR500LA                                                                              | PCR1000LA                                             | PCR2000LA | PCR4000LA | PCR6000LA |  |
|-------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|-----------|-----------|--|
|                   | 以下の指令ま<br>EMC指令 2<br>EN 61326-1                                                       | 以下の指令および規格の要求事項に適合<br>EMC指令 2004/108/EC<br>EN 61326-1 |           |           |           |  |
| 電磁適合性 (EMC) (*16) | 以下の規格の<br>適合<br>EN 61000-3-<br>EN 61000-3-                                            | )要求事項に<br>2<br>3                                      | _         | _         | _         |  |
| 安全性 (*16)         | 以下の指令および規格の要求事項に適合<br>低電圧指令 2006/95/EC<br>EN 61010-1<br>Class I<br>Pollution degree 2 |                                                       |           |           | _         |  |

\*1 入力電圧レンジ 100 V/200 V は、スイッチで選択可能。

\*2 出力電圧レンジ 100 V/200 V、出力電流定格値、負荷力率 1、出力周波数 40 Hz ~ 999.9 Hz の時。

\*3 出力電圧レンジ 100 V/200 V は、前面パネルのスイッチで切り替え可能。分解能:0.1V

\*4 出力電圧 1 V ~ 100 V/2 V ~ 200 V、負荷力率 0.8 ~ 1 の時。(AC / AC-S モード)

出力電圧 100 V ~ 150 V/200 V ~ 300 V(AC / AC-S モード) および 100 V ~ 212 V/200 V ~ 424 V(DC モード) 時 は、出力電圧により出力電流を低減。

負荷力率が0~0.8の時は、負荷力率により出力電流を低減。(AC / AC-S モード)

- 出力周波数が1Hz~40Hzの時は、出力周波数により出力電流を低減。(AC/AC-Sモード)
- \*5 コンデンサインプット型整流負荷に対して。(ただし、定格出力電流の実効値により制限)
- \*6 分解能:1)0.01 Hz(1.00 Hz ~ 100.0 Hz)、2)0.1 Hz(100.0 Hz ~ 999.9 Hz)
- \*7 出力電圧 80 V~150 V/160 V~300 V、負荷力率 1 の時。出力端子盤における値。
- \*8 出力電圧 80 V~ 150 V/160 V~ 300 V、負荷力率 1 の時。200 Hz を基準とした時の出力電圧変動。
- \*9 出力電圧レンジ 100 V/200 V、出力電流 0 A の時。
- \*10 出力電圧 80 V ~ 150 V/160 V ~ 300 V、負荷力率 1 の時。
- \*11 出力電圧レンジ 100 V/200 V、負荷力率 1 の時、出力電流 0 A ←→定格値の変化に対して。
- \*12 真の実効値表示、クレストファクタ3以下の波形において。
- \*13 出力周波数設定値(内部基準電圧の周波数)を表示。
- \*14 出力周波数 40 Hz ~ 999.9 Hz において。
- \*15 出力周波数 45 Hz ~ 65 Hz において。
- \*16 パネルに CE マーキングの表示のあるモデルに対してのみ。特注品、改造品には適用されません。
- \*17 出力周波数 45 Hz ~ 65Hz、無負荷、常温において。
- \*18 無負荷、常温において。
- \*19 定格出力電流の実効値により制限される。
- \*20 出力電圧レンジ 100 V における定格最大電流。

■出力電圧率ー定格出力電流特性



図 11-1 出力電圧率一定格出力電流特性(AC モード)





図 11-2 出力電圧率一定格出力電流特性(DC モード)

■負荷力率ー定格出力電流特性



図11-3 負荷力率一定格出力電流特性

## ■出力周波数ー定格出力電流特性



出力電圧率とは、ACモードまたはDCモードにおける出力電圧 100 V/200 V(出力 100 V/200 V レンジ時)を 100 % とした時の百分率を示します。

出力電流率とは、AC モードまたは DC モードにおける最大定格出力電流を 100% とした時の百分率を示します。

図 11-1 と図 11-3 により、定格出力電流は両方の出力電流率の積となります。また 図 11-4 の出力電流率は上記の出力電流率の積の値より小さい場合に優先します。 (AC モードのみ適用)

# 11.2 RS-232C および GPIB における動作仕様

| 項目    |            | 設定範囲                                    | 分解能      | 設定確度                                                                                                         |
|-------|------------|-----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------|
|       | imes 1 deg | $0~{ m deg}\sim 360~{ m deg}$           | 1 deg    | 1 deg:T2=T4=0 の時<br>1 ms:T2>0 または T4>0 の時                                                                    |
|       | imes 1 ms  | $0~{ m ms}\sim 999.9~{ m ms}$           | 0.1 ms   | ± $(1 \times 10^{-3}+0.1 \text{ ms})$ : T2=T4=0 の時<br>± $(1 \times 10^{-3}+1 \text{ ms})$ : T2>0 または T4>0 の時 |
| тэ    | $\times 1$ | $0  \mathrm{ms} \sim 9999  \mathrm{ms}$ | 1 mc     | $+ (1 \times 10^{-3} + 1 \text{ ms})$                                                                        |
| 12    | × 10       | $0.00~{ m s} \sim 99.99~{ m s}$         | 1 1115   | $\perp$ (1 $\wedge$ 10 +1 ms)                                                                                |
| Т2    | $\times 1$ | $0.0\mathrm{ms}\sim 999.9\mathrm{ms}$   | 0.1 ms   | ± (1 × 10 <sup>-3</sup> +0.1 ms): T2=T4=0 の時                                                                 |
| 15    | × 10       | $0~{ m ms}\sim~9999~{ m ms}$            | 1 ms     | ± (1 × 10 <sup>-3</sup> +1 ms):T2>0 または T4>0 の時                                                              |
| т4    | $\times 1$ | 1 0 ms $\sim$ 9999 ms                   |          |                                                                                                              |
| 14    | × 10       | $0.00~{ m s} \sim 99.99~{ m s}$         | 1 1115   | $\pm (1 \times 10^{-} + 1 \text{ ms})$                                                                       |
| Τ5    | $\times 1$ | $0 \text{ ms} \sim 9999 \text{ ms}$     | 1 ms     | 1 ++ < / 1/                                                                                                  |
| 15    | × 10       | $0.00~{ m s} \sim 99.99~{ m s}$         | 10 ms    |                                                                                                              |
|       | $\times 1$ | 0 サイクル~ 9999 サイクル                       | 1サイクル    |                                                                                                              |
| N     | × 10       | 0 サイクル~ 99 990 サイクル                     | 10 サイクル  | 1 サイクル                                                                                                       |
|       | × 100      | 0 サイクル~ 999900 サイクル                     | 100 サイクル |                                                                                                              |
| V(T3) |            | 出力電圧の設定範囲と同じ                            | 0.1 V    | -                                                                                                            |
| R     | РТ         | 0回~9998回または∞                            | 1 回      | 1 回                                                                                                          |

## 電源ライン異常シミュレーション

## シーケンス動作

|      | 項目        | 設定範囲            | 分解能   | 設定確度                                      |
|------|-----------|-----------------|-------|-------------------------------------------|
| ADR  |           | $0 \sim 99$     | 1     | -                                         |
| FRQ  |           | 出力周波数の設定範囲と同じ   | 同左    | 同左                                        |
| Vac  |           | 出力電圧の設定範囲と同じ    | 同左    | 同左                                        |
|      | HOUR (時間) | 0時間~999時間59分    | 1 min | $\pm$ (1 × 10 <sup>-3</sup> +0.5 min)     |
| TIME | MIN (分)   | 0 分~ 999 分 59 秒 | 1s    | $\pm (1 \times 10^{-3} + 0.5 \text{ s})$  |
|      | SEC (秒)   | 0 秒~ 999.999 秒  | 1 ms  | $\pm (1 \times 10^{-3} + 0.5 \text{ ms})$ |
| WAVE |           | 特殊波形出力と同じ       | 同左    | _                                         |
| IMP  |           | 出力インピーダンスと同じ    | 同左    | 同左                                        |
| V dc |           | 出力電圧の設定範囲と同じ    | 同左    | 同左                                        |

## AC+DC モード

| 項目   | 設定範囲                                                                                       | 分解能                         | 設定確度 |
|------|--------------------------------------------------------------------------------------------|-----------------------------|------|
| 電圧設定 | AC 電圧設定範囲は AC モー<br>ドと同じ<br>DC 電圧設定範囲は DC モー<br>ドと同じ<br>ただし AC+DC 電圧のピーク<br>値は DC 電圧の設定範囲内 | AC モードお<br>よび DC モー<br>ドと同じ | _    |
| 最大電流 | DC モードと同じ                                                                                  | —                           | _    |
| 電力容量 | DC モードと同じ                                                                                  | _                           | _    |
| 周波数  | AC モードと同じ                                                                                  | 同左                          | _    |

特殊波形出力

| 項目       | 設定範囲             | 分解能  | 設定確度 |
|----------|------------------|------|------|
| 波形バンク    | 0~14 (0は読み出し専用)  | 0    | —    |
| クレストファクタ | $1.10 \sim 1.40$ | 0.01 | 0.01 |

## 出力インピーダンス設定

| 項目         |           | 設定範囲                             | 分解能      | 設定確度                                   |
|------------|-----------|----------------------------------|----------|----------------------------------------|
|            | 100 V レンジ | $0 \ \Omega \sim 4.0 \ \Omega$   | 40 m Ω   | $\pm (20 \% + 80 \text{ m} \Omega)$    |
| FCKJ00LA   | 200 V レンジ | $0 \ \Omega \sim 16.0 \ \Omega$  | 160 m Ω  | $\pm (20 \% + 320 \mathrm{m}\Omega)$   |
|            | 100 V レンジ | $0~\Omega\sim 2.0~\Omega$        | 20 m Ω   | $\pm (20 \% + 40 \text{ m} \Omega)$    |
| FCKI000LA  | 200 V レンジ | $0~\Omega \sim 8.0~\Omega$       | 80 m Ω   | $\pm (20 \% + 160 \mathrm{m}\Omega)$   |
|            | 100 V レンジ | $0 \ \Omega \sim 1.0 \ \Omega$   | 10 m Ω   | $\pm (20 \% + 20 \text{ m} \Omega)$    |
| FCK2000LA  | 200 V レンジ | $0 \ \Omega \sim 4.0 \ \Omega$   | 40 m Ω   | $\pm (20 \% + 80 \text{ m} \Omega)$    |
|            | 100 V レンジ | $0~\Omega\sim 0.5~\Omega$        | 5 m Ω    | $\pm (20 \% + 10 \text{ m} \Omega)$    |
| PCR4000LA  | 200 V レンジ | $0 \ \Omega \sim 2.0 \ \Omega$   | 20 m Ω   | $\pm (20 \% + 40 \text{ m} \Omega)$    |
|            | 100 V レンジ | $0 \ \Omega \sim 0.333 \ \Omega$ | 3.33 m Ω | $\pm (20 \%$ +6.67 m $\Omega$ )        |
| I CR0000LA | 200 V レンジ | $0 \ \Omega \sim 1.333 \ \Omega$ | 13.33 mΩ | $\pm (20 \% + 26.67 \text{ m} \Omega)$ |

## 出力オン、オフ位相設定

| 項目   | 設定範囲                   | 分解能   | 設定確度  |
|------|------------------------|-------|-------|
| 位相設定 | $0 \deg \sim 360 \deg$ | 1 deg | 1 deg |

指示計

| 項目              | 設定範囲 | 分解能            | 確度                                                          |
|-----------------|------|----------------|-------------------------------------------------------------|
| 皮相電力計測          | _    | 最小(値に<br>より変化) | 電力計と同じ                                                      |
| 力率計測            | _    | 0.01           | 電力計と同じ                                                      |
| ピークホールド<br>電流計測 | _    | ピーク電流<br>計と同じ  | ± (2% of rdg+16 digits) 以内(定格最大電流の<br>5%から定格最大ピーク電流、常温において) |

# 11.3 動作特性



出力電流率:最大定格出力電流を 100% とした時の百分率を示します。 出力電圧率:出力電圧 100 V/200 V(出力 100 V/200 V レンジ時)を 100% とした時 の百分率を示します。

仕様

第 11

童

# 11.4 外形寸法図



図 11-7 PCR500LA、PCR1000LA、PCR2000LA

単位:mm





図 11-9 PCR6000LA

単位:mm



付録では、用語の解説、電源ライン異常シミュレーション動作設定表、シーケンス 動作設定表、サンプルプログラムを記載しています。

# A.1 用語の解説

## 1. 定格出力(電力)容量または電力容量

下記の範囲において連続して供給できる出力電力容量の最大値(単位:VA)。

|       |                 | AC モード、<br>AC-S モード                 | DC モード                             |
|-------|-----------------|-------------------------------------|------------------------------------|
| 出力電圧  | 出力 100 V レンジの場合 | $100 \text{ V} \sim 150 \text{ V}$  | $100 \text{ V} \sim 212 \text{ V}$ |
|       | 出力 200 V レンジの場合 | $200 \text{ V} \sim 300 \text{ V}$  | $200 \text{ V} \sim 424 \text{ V}$ |
| 負荷力率  |                 | $0.8 \sim 1.0$                      | _                                  |
| 出力周波数 |                 | $40\mathrm{Hz}\sim999.9\mathrm{Hz}$ | _                                  |

・例えば PCR1000LA では1 kVA になります。

・DC モードでは AC モードまたは AC-S モードの 1/2 になります。

## 2. 定格最大出力電流

下記の範囲において連続して供給できる出力電流(実効値)の最大値(単位:A)。

|       |                 | AC モード、<br>AC-S モード                 | DC モード |
|-------|-----------------|-------------------------------------|--------|
| 出力電圧  | 出力 100 V レンジの場合 | 100 V                               | 100 V  |
|       | 出力 200 V レンジの場合 | 200 V                               | 200 V  |
| 負荷力率  |                 | $0.8 \sim 1.0$                      | _      |
| 出力周波数 |                 | $40\mathrm{Hz}\sim999.9\mathrm{Hz}$ | _      |

・DC モードでは AC モードまたは AC-S モードの 1/2 になります。

定格最大出力電流 = 定格出力(電力)容量 [VA] 出力電圧率 100 %の電圧 [V] \*\* \*\*100 V または 200 V

## 3. 定格出力電流

#### ■ AC モードおよび AC-S モードの場合

出力電圧、負荷力率、出力周波数の組み合せによって低減された出力電流(実効値) の連続最大値。

## ■DC モードの場合

出力電圧によって低減された出力電流の連続最大値(単位:A)。

・詳細については「8.4 出力と負荷について」を参照してください。
#### 4. 最大出力ピーク電流・最大ピーク電流(AC モード、AC-S モードのみ)

コンデンサインプット型整流負荷において、本機より供給できる出力電流(ピーク 値)の連続最大値(単位:Apeak)。

最大出力ピーク電流=定格最大出力電流(実効値)×4

波高率= 
$$\frac{\ell' - 2 f d}{g g d d} \leq 4$$
の場合のみ

出力電圧: 100 V ~ 150 V (出力 100 V レンジの場合) : 200 V ~ 300 V (出力 200 V レンジの場合)

出力周波数:40 Hz ~ 999.9 Hz



図 A-1 出力電流波形の例

#### 5. 瞬時ピーク電流

負荷に供給できる出力電流(ピーク値)の瞬時(約1秒間)最大値(単位:Apeak)。 電流波形、出力電圧、出力周波数、負荷力率によって異なります。 例:正弦波出力電圧100V、出力周波数50Hz、負荷力率1の場合 瞬時ピーク電流(ピーク値)=定格最大出力電流(実効値)×2

・詳細については「8.4 出力と負荷について」を参照してください。

#### 6. 瞬時ピーク電流率

定格最大出力電流を 100% としたときの瞬時ピーク電流の百分率(単位:%)。 ・詳細については、「8.4 出力と負荷について|を参照してください。

#### 7. 出力電流率

定格最大出力電流を100%としたときの出力電流の百分率(単位:%)。

#### 8. 出力電圧率

出力 100 V/200 V レンジでは出力電圧 100 V/200 V を 100 % としたときの出力電圧 の百分率(単位:%)。

#### 9. 出力電圧波形歪率

出力電圧= 80 V ~ 150 V (出力 100 V レンジの場合) または 160 V ~ 300 V (出力 200 Vレンジの場合)、負荷力率=1のときの出力電圧波形の全高調波歪率(単位:%)。

#### 10. 出力電圧応答速度

出力電圧= 100 V (出力 100 V レンジの場合) または 200 V (出力 200 V レンジの 場合)、負荷力率=1 (AC モードの場合)の場合に、出力電流率 0% から 100% に 変化させたときの、出力電圧変化が全変化分の 10% を越え再び 10% 以内に戻るま での時間(単位: μs)。



#### 11. アクティブフィルタ

入力電流の波形歪(高調波電流)を低減するための回路で、本機内部の入力電源部 に採用されています。スイッチング制御によるアクティブフィルタです。力率が改 善され(0.95以上、電流波形はほぼ正弦波)、入力電圧が歪むこともほとんどなく なります。

#### 12. コンデンサインプット型整流(回路)負荷

電子機器などの内部において、入力の交流電圧を、機器が作動するために必要な 直流電圧に変換する整流回路部の構成が図 A-3(a)のようになっている負荷のこ と。図 A-3 (b) のような入力電流が流れます。

この場合の入力電流のピーク値は通常、実効値の2~4倍程度となり、出力電圧の ピーク(位相角90 deg または270 deg)を中心にして導通角(電流が流れている期 間)は20 deg~90 deg 程度となります。



図 A-3 コンデンサインプット型整流(回路)負荷

主なコンデンサインプット型整流負荷の例

#### 家電機器

テレビ、ビデオデッキなどのビデオ機器、オーディオ機器、電子レンジ、イン バータ式エアコン、インバータ式照明器具など。

#### IT 機器

パソコン、ファクシミリ、CAD システムなど。

その他

大型コンピュータシステム、FA 機器、通信機器などのスイッチング電源を装備している機器。

#### 13. ディレーティング(する)

低減するという意味。一般的には周囲環境条件(温度、負荷など)により、その機器の最大定格値(電圧、電流など)を低く抑えて使用することをいいます。

#### 14. 瞬低

瞬時電圧低下の略。商用電源ラインの電圧が、雷などの影響によって瞬時的に電圧 低下を起こす状態をいいます。

- 般的にこの電圧低下の時間は数 10 ms ~ 数 100 ms、電圧低下のレベルは 20 % ~ 80 % となっています

### A.2 電源ライン異常シミュレーション動作設定表

PCR-LA シリーズ

 TITLE
 DATE
 No.

| NO. | T1 | T2 | T3 | T4 | T5/N | V(T3) | RPT | POL | MEMO |
|-----|----|----|----|----|------|-------|-----|-----|------|
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |
|     |    |    |    |    |      |       |     |     |      |

### A.3 シーケンス動作設定表



| ADR | R | F | R | Vac | Th | Tm | Ts | WAVE | IMP | Vdc | STRT | TRG | OUT |
|-----|---|---|---|-----|----|----|----|------|-----|-----|------|-----|-----|
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |
|     |   |   |   |     |    |    |    |      |     |     |      |     |     |

| <b>A.</b> 4 | サンプルプログラム                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | RS-232C や GPIB を使用したリモートプログラムの例を記します。サンプルプログラム 1 ~ 3 は当社ホームページ http://www.kikusui.co.jp でダウンロードサービスを行っている Visual Basic ドライバ(PCR-L ドライバ)を使用しています。サンプルプログラム 4 ~ 6 は PCR-L ドライバを使用しない VISA ライブラリのみを使用したサンプルです。PCR-L ドライバを使用する場合は Download Service ページから PCR-L/W series の Visual Basic ドライバ Ver2.81 以降をダウンロードしてください。PCR-LA は基本的に PCR-L のメッセージ体系を継承していますので PCR-L/W series の Visual Basic ドライバが使用できます。 |
|             | GPIB をご使用になる場合は VISA(Virtual Instrument Software Architecture) ライブラリに対応した GPIB カード(National Instruments NI-488.2M 互換ボード) が必要です。                                                                                                                                                                                                                                                                  |
|             | RS-232C をご使用になる場合は 19200 bbs、ストップビット 1、データ長 8、パリティなし(0812)に設定してください。<br>RS-232C と GPIB のどちらをご使用になる場合でも VISA ライブラリが必要となります。NI-VISA は http://www.ni.com からダウン<br>ロードすることができます。                                                                                                                                                                                                                     |
|             | PCR-L ドライバは Microsoft Visual Basic の他 Microsoft Visual C++ や Borland Delphi 等でも利用可能ですが、このサンプルプログラム 1 ~ 3 では Microsoft Visual Basic を例にとっています。また、サンプルプログラム 4 ~ 6 は Microsoft Excel97 の VBA を例に<br>しました。                                                                                                                                                                                           |
|             | Visual Basic で VISA と PCR-L ドライバを使用するには、前準備として以下の手順が必要です。                                                                                                                                                                                                                                                                                                                                        |
|             | 1.VISA ライブラリをインストールします。(VISA のみの場合は2 以降の手順は<br>必要ありません)                                                                                                                                                                                                                                                                                                                                          |
|             | 2.PCR-L ドライバ(perdriverxxx.exe)をインストールします。                                                                                                                                                                                                                                                                                                                                                        |
|             | 3.Visual Basic のメニュー!プロジェクト!参照設定を選択し参照設定ダイアロ                                                                                                                                                                                                                                                                                                                                                     |
|             | グを表示させます。                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 4.[参照] ボタンをクリックして C:¥Program Files¥Common Files¥Kikusui                                                                                                                                                                                                                                                                                                                                          |
|             | Shared¥PcrlDrv.dll を選択します。                                                                                                                                                                                                                                                                                                                                                                       |
|             | 5. 参照設定ダイアログのリストから Kikusui PCR-L/W series driver にチェック                                                                                                                                                                                                                                                                                                                                           |
|             | [ レ]を入れます。                                                                                                                                                                                                                                                                                                                                                                                       |
|             | PCR-L ドライバの Help はオブジェクトブラウザ(F2)で<すべてのライブラリ>を PerlDrv にして各クラスやメンバにカーソル<br>を合わせて F1 することにより参照できます。                                                                                                                                                                                                                                                                                                |

待ち時間なしに PCR-LA にクエリメッセージを送るのは危険です。GPIB/RS-232C 割込みで処理されているため他の処理より も優先されます。 このように vourr? を待ち時間なしに送り続けると PCR-LA は最悪の場合、暴走する可能性があります。Timer 等を使って 1 秒間隔程度でモニタすることをお勧めします。また、大量にコマンドメッセージを送る場合はときどき待ち時間を入れるよ Call ibwrt(PcrLa, "VOUT?") Call ibrd(PcrLa, sBuf) For i = 1 To n Next i

### サンプルプログラム1

うにしてください。

出力電圧(AC モード)をセットして出力をオン、オフし、出力電圧値と出力電流値をモニタして表示するプログラムです。

|         | 51A      | Output an | Output off | Voltage set |
|---------|----------|-----------|------------|-------------|
| a Form1 | 30.1V 0. |           |            | 30.0        |

Dim LA As New IPcrl

Private Sub Form\_Load()
' LA.Connect "GPIB::1"

- ' IPcrl オブジェクトのインスタンス (実体) を作成
- ・ FORM が生成されるときに接続
  - GPIB アドレス1の場合

| LA.Connect "ASRL1"<br>End Sub                                                                            | ' RS-232C COM1 の場合 (COM2 の場合は ASRL2)                         |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Private Sub Form_Unload(Cancel As Integer)<br>LA.SetString "LOC"<br>LA.Disconnect<br>End Sub             | ・FORM が消滅するときに接続を解除<br>・ローカルに戻す<br>・GPIB または RS-232C への接続を解除 |
| <pre>Private Sub VoltSetButton_Click()     LA.Voltage = Val(VoltText.Text) End Sub</pre>                 | ' Voltage set ボタン<br>' TextBox に設定された電圧値を PCR-LA に設定         |
| <pre>Private Sub OutputOnButton_Click()     LA.Output = True End Sub</pre>                               | ' Output on ボタン<br>' Output on                               |
| <pre>Private Sub OutputOffButton_Click()     LA.Output = False End Sub</pre>                             | ' Output off ボタン<br>' Output off                             |
| <pre>Private Sub Timer1_Timer() Dim dVolt As Double Dim dCurr As Double</pre>                            | - 1000ms おきのタイマ                                              |
| LA.SetString "VOUT?"<br>dVolt = Val(LA.GetString)<br>Label1.Caption = Format(dVolt, "0.0 V")             | ・ VOUT? コマンドメッセージを送出<br>・ 一度数値に変換<br>・ Label1 に出力電圧値を表示      |
| <pre>LA.SetString "IOUT?" dCurr = Val(LA.GetString) Label2.Caption = Format(dCurr, "0.0A") End Sub</pre> | ・ IOUT? コマンドメッセージを送出<br>- 一度数値に変換<br>- Iabel2 に出力電流値を表示      |

電源ライン異常シミュレーションを行うプログラムです。T1、T2 等の各パラメータが設定できます。

|            | Vorm Volt(V) 100<br>13 Volt(V) 50<br>Run<br>Stop                             |
|------------|------------------------------------------------------------------------------|
| Simulation | T1 [deg] 90<br>T2 [s] 0.1<br>T3 [s] 0.1<br>T4 [s] 0.1<br>Repeat 10<br>Repeat |

Dim LA As New IPcrl Dim Sim As IPcrlSimulation Private Sub Form\_Load()
' LA.Connect "GPIB::1"
LA.Connect "ASRL1"
Set Sim = LA.Simulation
End Sub

Private Sub Form\_Unload(Cancel As Integer)
LA.SetString "LOC"
LA.Disconnect
End Sub

Private Sub RunButton\_Click()

LA.Output = False Sim.Active = True

- IPcrl オブジェクトのインスタンス(実体)を作成
- ' Simulation のサブオブジェクトを作成
- FORM が生成されるときに接続
  - ' GPIB アドレス1の場合
- ' RS-232C COM1 の場合 (COM2 の場合は ASRL2)
- ' LA.Simulation を Sim に代替
- ・ FORM が消滅するときに接続を解除
- ローカルに戻す
- GPIB または RS-232C への接続を解除
- Run ボタン
- ' OUTPUT OFF
- Simulation モードにする

LA.Simulation.Active = True と同じ

Sim.T1(pcrlUnitDegree) = Val(T1.Text) Sim.T2 = Val(T2.Text) Sim.T3 = Val(T3.Text) Sim.T4 = Val(T4.Text) Sim.T5 = Val(T5.Text) Sim.Repeat = Val(Repeat.Text) Sim.Repeat = Val(RormVolt.Text) Sim.VT3 = Val(T3Volt.Text) LA.Voltage = Val(NormVolt.Text) LA.Output = True Sim.Run End Sub Private Sub StopButton\_Click() Sim.Stop LA.Output = False

T1を位相角で設定
T2をTextBoxの値で設定
T3をTextBoxの値で設定
T4をTextBoxの値で設定
T5をTextBoxの値で設定
繰り返し回数をTextBoxの値で設定

- T3 の電圧値を TextBox の値で設定
- 通常の電圧値を TextBox の値で設定
  - ' OUTPUT ON
- ' Simulation 開始
- ' Stop ボタン
- ' Simulation 停止
  - ' OUTPUT OFF

End Sub

シーケンスを実行するプログラムです。Step1~3の出力電圧(ACモード)、周波数、時間が設定できます。

|             | _                      |                      | Send | Run | Stop |  |
|-------------|------------------------|----------------------|------|-----|------|--|
|             | Time[s]<br>10          | <u> </u>             |      |     |      |  |
|             | Freq[Hz]<br>50         | 00<br>100<br>100     |      |     |      |  |
| 3. Sequence | ACVolt[V]<br>Step1 [10 | Step2 20<br>Step3 30 |      |     |      |  |

Dim LA As New IPcrl Dim Seqs As IPcrlSeqItems Dim Seq As IPcrlSeqItem Private Sub Form\_Load()
' LA.Connect "GPIB::1"
LA.Connect "ASRL1"
Set Seqs = LA.SeqItems
End Sub

Private Sub Form\_Unload(Cancel As Integer) LA.SetString "LOC" LA.Disconnect End Sub

Private Sub SendButton\_Click()
Seqs.RemoveAll

- IPcrl オブジェクトのインスタンス(実体)を作成
  - Sequence コレクションのサブオブジェクトを作成
     Sequence のサブオブジェクトを作成
- ・ FORM が生成されるときに接続
  - ' GPIB アドレス1の場合
- ' RS-232C COM1 の場合 (COM2 の場合は ASRL2)
- FORM が消滅するときに接続を解除
- ローカルに戻す cmrn またけ ng 2000 への按結を
- GPIB または RS-232C への接続を解除
- Send ボタン
- コレクションをクリア

Set Seg = Segs.Add
Seq.Voltage = Val(ACVolt1.Text)
Seq.Frequency = Val(Freq1.Text)
Seq.Second = Val(Time1.Text)

Set Seq = Seqs.Add
Seq.Voltage = Val(ACVolt2.Text)
Seq.Frequency = Val(Freq2.Text)
Seq.Second = Val(Time2.Text)

Set Seq = Seqs.Add
Seq.Voltage = Val(ACVolt3.Text)
Seq.Frequency = Val(Freq3.Text)
Seq.Second = Val(Time3.Text)

For Each Seq In Seqs Seq.Send Next Seq End Sub Private Sub RunButton\_Click()
Seqs.Run 1, 3, 10
End Sub

Private Sub StopButton\_Click()
Seqs.Stop
LA.Output = False
End Sub

コレクションに Sequence の 1Step 目を追加

- ' 1Step 目の電圧を TextBox の値で設定
- ・1Step 目の周波数をTextBoxの値で設定
- ' 1Step 目の時間 [s] を TextBox の値で設定
- ・ コレクションに Sequence の 2Step 目を追加
- ・ 2Step 目の電圧を TextBox の値で設定
- ・2Step 目の時間 [s] を TextBox の値で設定
- コレクションに Sequence の 3Step 目を追加
  - 3Step 目の電圧を TextBox の値で設定
- 3Step 目の周波数をTextBox の値で設定
- 3Step 目の時間 [s] を TextBox の値で設定
- 1Step  $\exists h \circ 3$ Step  $\exists \delta$
- ' Send する
- Run ボタン
- ' Start:1, End:3, Loop:10
- ' Stop ボタン
- ' Sequence  $\mathring{x}$  Stop ' OUTPUT OFF

AC 出力電圧値の設定、出力のオン、オフ、出力電圧の設定、電流の表示するサンプルプログラムです。

|                                                                                |                     | T         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |             |                                     |                             |
|--------------------------------------------------------------------------------|---------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------------------------------|-----------------------------|
| (H),(1/\ (M)<br>(H),(1/\ (M)                                                   | <b>~</b> • <b>⊕</b> | ×         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output OFF | Voltage set |                                     |                             |
| ¥ Z & ♥                                                                        | , %<br>•            | C LL      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |             |                                     |                             |
| 武(回) ッール① う<br>(1) ッ · ベ ·   「                                                 |                     | UserForm1 | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 6           |                                     | ) <u>**</u><br>] ••<br>/ •• |
| Kie<br>Rivo 挿入① 畫<br>人 目 00 1                                                  | - B Z               | 0         | ample4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             | オードシャイフ*(11) <b>・</b>               |                             |
| Excel - sample4<br>① 編集(E) 表示<br><b>1 ④                                   </b> | 1 - 60              |           | , or a constant of the second |            |             | Bheetl /<br>Bheetl /                |                             |
| X Microsoft                                                                    | VS P⊐<br>V          | -         | 0 C 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0<br>-   | ∞ o Ç;      | 11<br>12<br>   12<br>   12<br>   12 | <b>   Aa</b> ab             |

Dim vi As Long Dim la As Long Dim vs As Long

Dim strCommand As String Dim strRdBack As String Dim Result As String Dim dsr As Integer Dim r As Long Dim c As Long

Private Sub UserForm\_Initialize()

vs = viOpen(vi, "ASRL1", vbNull, 10, la) vs = viOpenDefaultRM(vi)

・ VISA ライブラリの初期化 ' RS-232C の場合 ' vs=viopen(vi, "GPIB::1", vbnull, 10, la)

**GPIB**(アドレス1)の場合

- FORM が読みこまれたときの処理

```
・ FORM を閉じたときローカルに戻す
                                                                                                                                                                                                                                                                                 vs = viSetAttribute(la, VI_ATTR_ASRL_FLOW_CNTRL, VI_ASRL_FLOW_XON_XOFF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Set Voltage ボタン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ' Output off ボタン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ' Output on ボタン
                                                                                                                                                                                                                                               vs = viSetAttribute(la, VI_ATTR_ASRL_STOP_BITS, VI_ASRL_STOP_ONE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ローカルに戻す
                                                                                                                                                                             vs = viSetAttribute(la, VI_ATTR_ASRL_PARITY, VI_ASRL_PAR_NONE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - 出力をオン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - 出力をオフ
                                                                                                                                                                                                                VI_ATTR_ASRL_DATA_BITS, 8)
                                                                         vs = viGetAttribute(la, VI_ATTR_INTF_TYPE, lIntfType)
                                                                                                                                            vs = viSetAttribute(la, VI_ATTR_ASRL_BAUD, 19200)
・ RS-232C の初期設定(PCR-LA の初期設定にあわせてあります)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                                                            If lintfType = VI_INTF_ASRL Then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    strCommand = "out off" + vbCrLf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       strCommand = "out on" + vbCrLf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Private Sub CommandButton3_Click()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Private Sub CommandButton1 Click()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Private Sub CommandButton2 Click()
                                                                                                                                                                                                              vs = viSetAttribute(la,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Private Sub UserForm_Terminate()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     strCommand = "loc" + vbCrLf
                                          Dim lIntfType As Long
                                                                                                                                                                                                                                                                                                                                                                                            vs = viClear&(la)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             vs = viClose(la)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            vs = viClose(vi)
                                                                                                                                                                                                                                                                                                                  End If
                                                                                                                                                                                                                                                                                                                                                                                                                                                             End Sub
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              End Sub
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              End Sub
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            End Sub
```

strCommand = "vset " + TextBox1.Value + vbCrLf

| <pre>vs = viWrite(la, strCommand, Len(strCommand), r) End Sub</pre>                            | - 電圧設定                                    |
|------------------------------------------------------------------------------------------------|-------------------------------------------|
| <pre>Private Sub CommandButton4_Click() Dim dVolt As Double Dim dCurr As Double</pre>          | ' Measure ボタン                             |
| strRdBack = Space(255)                                                                         |                                           |
| strCommand = "VOUT?" + vbCrLf                                                                  |                                           |
| <pre>vs = viWrite(la, strCommand, Len(strCommand), r) vs = viRead(la, strRdBack, 255, c)</pre> | <ul><li>出力電圧の問合せ</li><li>計測値の取得</li></ul> |
| dVolt = Val(strRdBack)'数值に変換<br>Labell.Caption = Format(dVolt, "0.0 V")                        | - 電圧値を表示                                  |
| strCommand = "IOUT?" + vbCrLf                                                                  |                                           |
| <pre>vs = viWrite(la, strCommand, Len(strCommand), r) vs = viRead(la, strRdBack, 255, c)</pre> | <ul><li>出力電流の問合せ</li><li>計測値の取得</li></ul> |
| dCurr = Val(strRdBack)'数値に変換<br>Label2.Caption = Format(dCurr, "0.0A")                         | - 電流値を表示                                  |
|                                                                                                |                                           |

End Sub

電源ライン異常シミュレーションを行うプログラムです。各種パラメータの設定、RUN、STOP ができます。

| ×      | ×        |            |            |    | 1    |   |        |   |        |     |    |   |   |    |    |      |     | ш,    |              |            |       | i. |
|--------|----------|------------|------------|----|------|---|--------|---|--------|-----|----|---|---|----|----|------|-----|-------|--------------|------------|-------|----|
|        | 8        | 8          |            |    | Т    |   |        |   |        |     |    |   |   |    |    |      |     |       | †↓‡          | ٦          |       |    |
|        |          | <b>\$</b>  | 8          |    | Ī    | 1 |        |   |        |     |    |   |   |    |    |      |     |       |              | 9          |       | 1  |
|        |          | 1          |            |    | Γ    |   | $\log$ |   |        | 1   |    |   |   |    |    |      |     |       |              | Þ          |       | 1  |
|        |          | ₫          | 1          |    |      |   | ۱e     | 2 | പ്പ    |     |    |   |   | 11 |    | 1    |     |       | -            |            | Ļ     | 1  |
|        | Ĵ        |            | ®.         |    |      |   | 7      | , | _      |     |    |   | 6 |    | e. |      |     |       | •            | ū,         | NN    | 1  |
|        | -C11-    | N◀<br>→    |            |    |      |   | Έ      | ł | 2      |     |    |   | 3 |    | ŝ  |      |     |       | <b>?</b>     | <u>™</u>   | PS    | 1  |
|        | SI       | <b>⊲</b> N | <u> </u>   |    |      |   | $\geq$ |   | GFD    |     |    |   |   | L  |    |      |     |       | \$           | <b>2</b>   | 90    | 1  |
|        | 14       | *          | 0          |    |      |   | - muo  |   | Ň      |     |    |   |   |    |    |      |     |       |              | 9h         |       | 1  |
|        | 56       |            | °`<br>I™   |    |      |   | Z      |   | Ë      |     |    |   |   |    |    |      |     |       | -            |            |       | 1  |
|        | <u></u>  | ₿₽         | <u>6</u> 8 |    |      |   |        |   |        | 1.0 |    |   |   | E. |    |      |     | -     |              |            |       | 1  |
|        | Ĩ,       | ۲          |            |    |      |   | ß      | 2 | _      |     | 8  |   |   |    |    | ۱.,  |     |       |              | Ū.         |       | 1  |
|        | Ð        | F<br>u     |            |    |      |   | Ľ      |   | Ľ      | J.  |    | L |   | Ľ  |    | Ľ    | - 1 |       | 2            | 415        |       | 1  |
|        | シート      | C.<br>⊁    |            |    |      |   | -      | 1 |        | ,   | _  |   |   |    |    |      |     |       |              | <b>4</b> P |       | 1  |
|        | ି        | ŝ          | lilili     |    | Form |   | Geo    | ļ | 6      |     | ms | 2 | σ | 2  | 2  | peat |     |       | *            |            |       | 1  |
|        | 記書       | 8          | Þ          |    | User |   | Ē      |   | Τ2     |     | Ê  | Ē | 4 | Ц  | 2  | В    |     |       | <            | 圌          |       | 1  |
|        | щн<br>—  | <b>a</b> 1 | 7          |    | 0    |   |        |   |        |     |    |   |   |    |    |      |     |       | j            | [6         |       | 1  |
|        | ŧΖ       |            | æ          |    |      |   |        |   | _      | 1   |    |   |   |    |    |      |     |       | ±(),         |            |       | 1  |
| 10     | ي.<br>** |            |            |    |      | _ | -      | - | 6<br>C | H   | _  | _ |   | _  | _  | _    | _   |       | <u>\$</u>    | 4Þ<br>11   |       | 1  |
| ≡5.×l  | S.       |            | Ξ          | П  | _    |   |        |   | ldma   |     |    |   |   |    |    |      |     |       | 77           | Ō          |       | 1  |
| ample  | **       | ae<br>A    |            |    | ш    |   |        |   | ő      |     |    |   |   |    |    |      |     |       | ତ            | S S        |       | 1  |
| Ň      | 無回       | 2          |            | -  |      | - | -      |   |        |     |    |   |   |    |    |      |     | 5     | 2            | -          |       | 1  |
| xcel   | 瀳        | 9          | 5          |    |      |   |        |   |        |     |    |   |   |    |    |      |     | leet1 | Ê            |            |       | 1  |
| Щ.     | Ē        |            | 8          |    | <    |   |        |   |        |     |    |   |   |    |    |      |     | 곗     | <u> 間差</u> ( |            |       | 1  |
| cros   | ንንሳ      | 1          | 11<br>d    | A1 |      | _ |        | _ |        |     |    |   |   |    |    |      | _   |       | 62           | ab         | ·.,   | 1  |
| W      | 2        |            | Σ          |    |      | - | ~      | e | 4      | ш   | 9  | ~ | ω | ത  | 9  | -    | 12  | -     | ΣH           | Aa         | 17.74 | 1  |
| $\sim$ | -        | _          |            |    |      |   |        |   |        |     |    |   |   |    |    |      |     |       |              |            |       | i. |

Dim la As Long Dim vi As Long

Dim vs As Long

Dim r As Long

Dim strCommand As String

Private Sub UserForm Initialize()

vs = viOpen(vi, "ASRL1", vbNull, 10, la) ' vs=viopen(vi, "GPIB::1", vbnull,10,1a) vs = viOpenDefaultRM(vi)

- RS-232C の初期設定(PCR-LA の初期設定にあわせてあります)

GPIB (アドレス 1) の場合

- ' RS-232C の場合
- VISA ライブラリの初期化
- FORM が読みこまれたときの処理

PCR-LA

・ 電源ライン異常シミュレーションモードをオン · FORM を閉じたときローカルに戻す vs = viSetAttribute(la, VI\_ATTR\_ASRL\_FLOW\_CNTRL, VI\_ASRL\_FLOW\_XON\_XOFF) - T1 [deg]を設定 VI\_ATTR\_ASRL\_STOP\_BITS, VI\_ASRL\_STOP\_ONE) - T2 [s] を設定 ・ ローカルに戻す vs = viSetAttribute(la, VI\_ATTR\_ASRL\_PARITY, VI\_ASRL\_PAR\_NONE) RUN ボタン ・ 出力をオフ vs = viSetAttribute(la, VI\_ATTR\_ASRL\_DATA\_BITS, 8) vs = viSetAttribute(la, VI\_ATTR\_ASRL\_BAUD, 19200) vs = viGetAttribute(la, VI\_ATTR\_INTF\_TYPE, lIntfType) strCommand = "T2\_" + TextBox2.Value + "s" + vbCrLf vs = viWrite(la, strCommand, Len(strCommand), r) strCommand = "T1DEG\_" + TextBox1.Value + vbCrLf strCommand = "SIMMODE ON" + vbCrLf If lintfType = VI INTF ASRL Then strCommand = "out off" + vbCrLf Private Sub CommandButton1\_Click() vs = viSetAttribute(la, Private Sub UserForm Terminate() strCommand = "loc" + vbCrLf Dim lIntfType As Long = viClear&(la) vs = viClose(la) vs = viClose(vi) End If End Sub End Sub ۷S

| <pre>vs = viWrite(la, strCommand, Len(strCommand), r)</pre>                                                              | - T3 [ms] を設定        |
|--------------------------------------------------------------------------------------------------------------------------|----------------------|
| <pre>Command = "T4_" + TextBox4.Value + "s" + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                 | - T4 [s] を設定         |
| <pre>Command = "T5_" + TextBox5.Value + "s" + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                 | - T5 [ s ] を設定       |
| <pre>:Command = "RPT_" + TextBox6.Value + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                     | ・繰り返し回数を設定           |
| <pre>cCommand = "T3VSET" + TextBox8.Value + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                   | - 変動電圧 V (T3) を設定    |
| <pre>cCommand = "VSET" + TextBox7.Value + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                     | ・ 変動前の電圧を設定          |
| <pre>cCommand = "OUT ON" + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                                    | ・出力をオン               |
| <pre>cCommand = "SIMRUN" + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                                    | - 電源ライン異常シミュレーションを開始 |
|                                                                                                                          |                      |
| き Sub CommandButton2_Click()' STOP ボタン<br>cCommand = "SIMSTOP" + vbCrLf<br>= viWrite(la, strCommand, Len(strCommand), r) | - 電源ライン異常シミュレーションを終了 |
| <pre>Command = "OUT OFF" + vbCrLf = viWrite(la, strCommand, Len(strCommand), r)</pre>                                    | ・出力をオフ               |

End Sub

シーケンスを実行するプログラムです。STEP1~3の出力電圧(AC モード)、周波数、時間が設定できます。

IT.

|                 |                        | 2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3                              | °           |    | сн<br>В |   |   |            |   | Connect    | ))))) |       | Disconnect |   |      |      |    |               |                |             | W       |
|-----------------|------------------------|------------------------------------------------------------------------|-------------|----|---------|---|---|------------|---|------------|-------|-------|------------|---|------|------|----|---------------|----------------|-------------|---------|
|                 | (H), (11\) (M) (4      | ∱* <mark>\$</mark> ↓ <mark>2</mark> }                                  | ~<br>       |    | ш       |   |   |            |   |            |       |       |            |   |      |      |    | -             | • 🔊 - 🍫        | 80<br>24    | CAPS NU |
|                 | 71/24 ( <u>0</u> )4/24 | Σ<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>40 | %<br>§<br>E |    | ш       |   |   |            |   | Time[s]    | -     | 2     | 3          |   | Cton | 200  |    | -             |                |             |         |
|                 | (I)11-4, (I)           | ÷5÷5                                                                   |             |    |         |   |   |            |   | Fred[Hz]   | 40    | 50    | 90         |   | 2    | 1001 |    |               |                | •           |         |
|                 | 挿入() 書式(               | ><br>0                                                                 | BIU         |    | 0       |   |   | gram 6     |   | AC Volt[V] | 10    | 20    | 30         |   |      |      |    |               | ∕ → (ח)*ר)ידלי |             |         |
| : sample6.xls   | (E) 表示( <u>V</u> )     | *                                                                      | ₩<br>11     | 11 | 8       |   |   | Sample Pro |   |            | Step1 | Step2 | Step3      |   | Cond | 2    |    |               | \$ © 1-⊦       | •           |         |
| crosoft Excel - | ファイル(E) 編集             | 1<br>1<br>1<br>1                                                       | Ċ∾ĊĔ4       | A1 | ۷       |   |   |            |   |            |       |       |            |   |      |      |    | N Sheet1 /    | どの調整(B) ↓      | ab  [***] 🗆 |         |
| 🗙 Mi            | 2                      |                                                                        | MS          |    |         | - | 2 | ო          | 4 | ഹ          | G     | ~     | ω          | တ | ₽    | Ξ    | 12 | ▼<br><u>▼</u> | ₩⊠             | Aa          | 14/2E   |

Dim vi As Long Dim la As Long Dim vs As Long

1

Dim r As Long Dim strCommand As String

Sub Button1\_Click()

Dim strVolt As String Dim strFreq As String Dim strTime As String Dim intCtr As Integer Dim strStep As String

'Send ボタン

| FOL           | intCtr = 6 To 8                                                                            | - セルの値を順番に読む                                                                    |
|---------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|               | <pre>strStep = Str(intCtr - 5)</pre>                                                       | ・シーケンスのアドレス                                                                     |
|               | <pre>strVolt = Range("c" + Format(intCtr)) strFreq = Range("d" + Format(intCtr)) </pre>    | Sheet1 の C 列の intCtr (6 ~ 8) 行目の電圧設定値<br>Sheet1 の D 列の intCtr (6 ~ 8) 行目の周波数設定値 |
|               | strTime = Range("e" + Format(intCtr))                                                      | Sheet1 のE 別の intCtr(6 ~ 8) 行日の時間の設元値                                            |
|               | strCommand = "SEDIT " + strStep                                                            | SEDIT コマンドメッセージ+シーケンスのアドレス                                                      |
|               | strCommand = strCommand + ",OFF,"                                                          | 国波数ランプ<br>Bitt **                                                               |
|               | strommand = strommand + strrreq ')<br>strcommand = strcommand + ",OFF,"                    | 回次致<br>龍圧 ランプ                                                                   |
|               | strCommand = strCommand + strVolt                                                          | <b>訂</b> 正                                                                      |
|               | <pre>strCommand = strCommand + ",0,0," + strTime</pre>                                     | - 時、分、秒                                                                         |
|               | <pre>strCommand = strCommand + ",0,0,0"</pre>                                              | - 波形バンク、インピーダンス、DC 電圧                                                           |
|               | <pre>strCommand = strCommand + ",OFF,OFF,1"</pre>                                          | <ul><li>・ステータス、トリガ、出力</li></ul>                                                 |
|               | <pre>strCommand = strCommand + vbCrLf</pre>                                                | ' CR LF                                                                         |
|               | <pre>vs = viWrite(la, strCommand, Len(strCommand)</pre>                                    | , エ) ' シーケンスのデータを設定                                                             |
| Nex           | t intCtr                                                                                   |                                                                                 |
| End Suk       |                                                                                            |                                                                                 |
| Sub But       | <pre>ton2_Click()</pre>                                                                    | - Run ボタン                                                                       |
| str           | Command = "SEQSTART 1" + vbCrLf                                                            |                                                                                 |
| VS<br>Str     | <pre>= viWrite(la, strCommand, Len(strCommand), r)<br/>Command = "SEQEND 3" + vbCrLf</pre> | - スタートアドレスを設定                                                                   |
| NS            | <pre>= viWrite(la, strCommand, Len(strCommand), r)</pre>                                   | - エンドアドレスを設定                                                                    |
| str           | Command = "SEQLOOP 3" + vbCrLf                                                             |                                                                                 |
| ΔS            | <pre>= viWrite(la, strCommand, Len(strCommand), r)</pre>                                   | ・ 繰り返し回数を設定                                                                     |
| str           | Command = "SEQRUN" + vbCrLf                                                                |                                                                                 |
| VS<br>End Sub | <pre>= viWrite(la, strCommand, Len(strCommand), r)</pre>                                   | ・ シーケンスを開始                                                                      |

```
GPIB (アドレス 1) の場合
                                                                                                                                                                                                                 ・ NISA ライブラリの初期化
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        vs = viSetAttribute(la, VI_ATTR_ASRL_FLOW_CNTRL, VI_ASRL_FLOW_XON_XOFF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ' Disconnect ボタン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      vs = viSetAttribute(la, VI_ATTR_ASRL_STOP_BITS, VI_ASRL_STOP_ONE)
                                                                         - シーケンスを終了
                                                                                                                                                                                                                                                     RS-232C の場合
                                                                                                                                                                            ' Connect ボタン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ・ローカルに戻す
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    vs = viSetAttribute(la, VI_ATTR_ASRL_PARITY, VI_ASRL_PAR_NONE)
Stop ボタン
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ・ 出力をオフ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    vs = viSetAttribute(la, VI_ATTR_ASRL_DATA_BITS, 8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      vs = viSetAttribute(la, VI_ATTR_ASRL_BAUD, 19200)
                                                                                                                                                                                                                                                                                                                                                                                                                                     vs = viGetAttribute(la, VI_ATTR_INTF_TYPE, lIntfType)
                                                                                                                                                                                                                                                                                                                                                             ・ RS-232C の初期設定(PCR-LA の初期設定にあわせてあります)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                             vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             vs = viWrite(la, strCommand, Len(strCommand), r)
                                                                                                                                                                                                                                                         vs = viOpen(vi, "ASRL1", vbNull, 10, la)
                                                                                                                                                                                                                                                                                             vs=viopen(vi,"GPIB::1",vbnull,10,la)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     If lintfType = VI INTF ASRL Then
                                       strCommand = "SEQSTOP" + vbCrLf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 strCommand = "OUT OFF" + vbCrLf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         strCommand = "loc" + vbCrLf
                                                                                                                                                                                                                     vs = viOpenDefaultRM(vi)
                                                                                                                                                                                                                                                                                                                                                                                                     Dim lIntfType As Long
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            vs = viClear&(la)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             vs = viClose(la)
                                                                                                                                                                                 Sub Button4 Click()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Sub Button5 click()
       Sub Button3_Click()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      End If
                                                                                                           End Sub
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              End Sub
```

End Sub

= viClose(vi)

ΔS

第

第

録

11

童

### 索引

#### 数字

50 Hz または 60 Hz に同期させる 4-15

#### Α

AC+DC モード 8-21, 10-7 AC/DC 5-4 AC-S モード 1-3, 3-8, 3-9, 3-11, 3-12, 3-14, 3-19, 4-6, 4-10, 4-13, 4-14, 4-16, 5-4, 8-4, 8-7, 8-12 AC モード 2-21, 3-8, 3-11, 3-12, 3-14, 3-19, 4-6, 4-10, 4-13, 4-14, 4-16, 5-4, 8-7 AC モードと AC-S モードの違い 8-12 AC モードと AC-S モードの違い 8-12 AC モードと AC-S モードの定格出力電流 8-4 AC + DC 5-7 ALARM 5-8 ALM CLR 4-18, 4-19, 5-5

#### С

CIRCUIT BREAKER 5-12 CIRCUIT BREAKER が作動した場合の対処方 法 4-23 CLR 5-5

#### D

DC モード 2-22, 2-23, 2-24, 3-8, 3-9, 3-11, 3-12, 3-14, 3-15, 4-2, 4-3, 4-6, 4-10, 4-13, 4-14, 4-16, 5-3, 5-4, 8-8 DIGIT 5-5 D 種以上の接地工事 2-7

#### Е

ENT 5-3 ENT 待ち 3-2 Err X が表示されたときの確認 4-21 ESC 5-2 ESC キー 2-17, 2-18, 2-20, 3-2, 3-4, 3-5, 3-9, 3-12, 3-14, 3-19, 4-7, 4-9

#### G

GPIB コントロール (オプション) 6-6

### H

HIGH LIMIT 5-7

#### I

I MODE 4-3, 5-3 INPUT VOLTAGE SELECTOR 2-11, 5-16 INPUT 端子盤 2-9, 5-16

#### J

J1 , J2 , J3 , J4 5-16 JOG 5-2

### Κ

KEYLOCK 5-4, 5-7

#### L

LIMIT 5-4 LINE ランプ 5-11 LOAD 5-8 LOAD レベルメータ 4-4 LOAD レベルメータ動作例 8-15 LOAD レベルメータのフルスケール 4-4 LOW LIMIT 5-7

#### Μ

MEM 5-5 MEMORY 5-8

#### 0

OUTPUT 5-2 OUTPUT ON/OFF 5-6 OUTPUT コンセントへの接続 2-24 OUTPUT コンセント 5-12 OUTPUT 端子盤 2-21, 5-16 OVER LOAD 5-8

#### Ρ

PCR500LA 用電源ケーブル 2-10 PCR-L コマンド互換性の設定 6-8 PCR-L シリーズとの組み合わせ 1-2 PEAK 5-7 PHASE 5-4 POWER 5-11 POWER スイッチ 5-11 POWER スイッチを オフ にする直前の内容を 記憶 3-6

#### R

RANGE 5-4, 5-7 RESET 5-4, 5-7 RMS 5-7 ROM バージョン 1-6 RS-232C コントロール 6-3

#### S

SELF TEST 5-4, 5-7 SENSING 5-4, 5-7 SENSING 端子盤 5-16 SET 5-6 SHIFT 5-3 SHUTTLE 5-2 SLOT 1 5-14 STORE 5-8 SYNC 5-5, 5-8 S — MODE 5-8

#### т

TO REMOTE CONTROLLER 5-9

#### V

V MODE 3-15, 3-17, 5-3 VA 測定 10-6

#### あ

アクティブフィルタ A-4 アラーム発生時の操作 4-19 アラームをクリアして一時的に使用する 4-21 アンマスクレジスタ 9-67

#### い

移動時の注意 2-6 イニシャルセットアップ状態 2-16 イミュニティテスタ 10-11

#### え

永久設置型機器 2-8 エラーレジスタ 9-69

#### お

応答速度 11-3 オーバーロード発生 4-22 オプションカードレジスタ 9-69 オプションの種類と組み合わせ 10-2

#### か

外形寸法 11-10 可燃性雰囲気 2-4 過負荷保護機能 8-9

#### き

キー操作の階層 8-21 キーロック機能 3-5 キャブタイヤケーブル 2-3 吸気口 5-12 吸気フィルタの清掃 7-2

#### <

クリーニング 7-2 クレストファクタ 8-20

#### け

ケーブルクランパ 2-3, 2-12

#### こ

高調波電流解析機能 8-20, 10-5 効率 11-3 交流結合出力モード 3-8 交流電圧出力モード 3-8 コンデンサインプット型整流(回路)負荷 A-4 コンデンサインプット型整流負荷の場合 8-6 コントロールパネル操作部 5-2 コントロールパネル表示部 5-6

#### さ

サージが発生する負荷の場合 8-7 サービスリクエストイネーブルレジスタ 9-67 最大ピーク電流 A-3 三相出力 10-9

#### し

シーケンス動作 10-4 シーケンス動作メッセージ 9-54

第

第

11

付

録

指示計 11-3 実効値表示(RMS) 4-2 シフトキー操作 3-2 シャトルによる数値設定 3-3 周波数の設定 3-19 周波数表示エリア 5-6 周波数リミット値 4-8,4-5 従来製品 PCR-L シリーズとの関係 8-2 出力インピーダンス設定 8-20, 10-6 出力インピーダンスを商用電源に近似させる 機能 10-10 出力オフ状態のインピーダンス 8-3 出力オン、オフの原理 3-7 出力オン、オフの位相設定 8-21 出力拡張キット 10-10 出力周波数設定確度・安定度 11-3 出力周波数-定格出力電流特性 11-6 出力測定メッセージ 9-25 出力定格 11-2 出力電圧安定度 11-2 出力電圧応答速度 A-4 出力電圧・周波数設定メッセージ 9-22 出力電圧の設定 3-8, 3-14 出力電圧波形歪率 A-4 出力電圧モード 3-8 出力電圧モードの切り換え 3-9 出力電圧率 A-4 出力電圧率-定格出力電流特性 11-5 出力電圧レンジの選択 3-11 出力電流率 A-3 出力のオン、オフ3-7 出力電圧波形がひずむ 7-6 出力表示の切り換え 4-2 瞬時ピーク電流 A-3 瞬時ピーク電流率 A-3 瞬低 A-5 使用周囲温度 / 湿度 11-3 ジョグシャトル 3-3 ジョグによる数値設定 3-3 シンクロ機能 4-15

#### す

ステータスバイトレジスタ 9-67 ステータスレジスタ 9-68 ステップ 8-18 ストッパ 5-13 ストッパおよびキャスタ 2-5

#### せ

製品についてのお問い合わせ 1-6 絶縁抵抗 11-3 接地 2-7 接地端子 (アース) 2-7 設置場所 2-4 線形負荷の場合 8-4 センシング機能 4-16, 8-16

#### そ

測定方式 8-12, 8-14

#### た

ターミナルボックス 5-15 ターミナルボックスカバー 2-21 耐電圧 11-3 単芯ケーブル 2-3 単相 3 線出力 10-8

#### ち

直流電圧出力モード 3-8

#### τ

定格最大出力電流 A-2 定格出力電流 A-2 定格出力電流の求め方 8-5 定格出力(電力)容量 A-2 適合規格 11-4 デジット機能 3-4 デバイスステータスイネーブルレジスタ 9-69 デバイスステータスレジスタ 9-69 電圧表示エリア 5-6 電圧表示モードの切り換え 4-2 電圧リミット値 4-5 テンキー 5-3 電源投入手順 2-14 電源ライン異常シミュレーション 10-4 電源ライン異常シミュレーションメッセージ 9-44 電流実効値測定 8-14 電流・電力表示モードの切り換え 4-3 電流ピーク値測定 8-14

電流表示エリア 5-6 電流平均値測定 8-14 電流リミット機能 8-9 電圧リミット値 4-6 電流リミット値 4-10, 4-5 電力測定 8-14

#### と

動作確認 2-18 動作状態メッセージ 9-14 動作特性 11-9 動作不良と原因 7-4 特殊な負荷の場合 8-7 特殊波形出力 8-20, 10-5 特殊波形メッセージ 9-61 突入電流が流れる負荷の場合 8-6 トランス負荷 8-6

#### な

内部半導体保護機能 8-9

#### に

入力定格 11-2 入力電源ケーブル 2-2, 2-10 入力電源ケーブルの要件 8-2 入力電源の接続 2-8

#### は

バージョン表示 2-15 ハーモニクスアナライザ 10-11 ハイインピーダンス状態 3-7, 8-3 排気口 5-17 配電盤スイッチ 2-8 配電盤への接続 2-10 ハイリミット 4-6, 4-8, 4-11, 9-39 波形バンク 8-20 波形歪率 11-3 パネル面の清掃 7-2 ハンドルの操作 2-7

#### ひ

ピーク値表示 (PEAK) 4-2 ピークホールド電流測定 8-14, 10-6

#### ふ

フォルトアンマスクレジスタ 9-68 フォルトレジスタ 9-68 負荷の極性 2-22 負荷の接続 2-21 負荷力率 8-4, 8-15, A-2 負荷力率-定格出力電流特性 11-5 腐食性雰囲気 2-4 付属品 2-3

#### $\sim$

平均值表示 4-2 並列運転 10-9

#### ほ

飽和磁束密度の小さい負荷の場合 8-7 ホームポジション 2-15, 3-2 保護機能の種類 4-18 保護板 2-21

#### め

メッセージとターミネータ 6-10 メッセージとレジスタ 6-13 メモリ機能の応用 8-17 メモリ機能の拡張 8-17, 10-8 メモリ設定メッセージ 9-41 メモリへの書き込み 4-13 メモリ読み出し 4-14

#### も

モータ、ランプ負荷 8-6 モードレジスタ 9-68

#### 6

ラインインピーダンスネットワーク 10-2 ラックマウント 10-12 ランプ 8-18

#### IJ

力率測定 10-6 リセットの実行 2-17 リミット値設定メッセージ 9-34 リミット値の設定 4-5 リミット値の設定可能範囲 4-6, 4-8, 4-11, 9-34, 9-37, 9-39

第 1 章

章

リモートコントローラ 10-2

#### る

ルーバの取り付け 7-3 ルーバの取り外し 7-2

#### れ

レギュレーションアジャスト 10-8 レジスタについて 9-65 レジスタ関連と汎用メッセージ 9-2

#### ろ

ローリミット 4-6, 4-8, 4-11, 9-39